Abstract:
A liquid crystal display panel includes a base substrate, a first step difference compensating pattern, a gate metal pattern, a semiconductor pattern, a source electrode, a drain electrode, a pixel electrode and a color filter. The first step difference compensating pattern is disposed on the base substrate and includes an inorganic material. The gate metal pattern is disposed on the first step difference compensating pattern and includes a gate electrode and a gate line electrically connected to the gate electrode. The semiconductor pattern is overlapped with the gate electrode. The source electrode is electrically connected to the semiconductor pattern. The drain electrode is electrically connected to the semiconductor pattern and is spaced apart from the source electrode. The pixel electrode is electrically connected to the drain electrode. The color filter is overlapped with the pixel electrode.
Abstract:
A thin film transistor substrate includes a switching element comprising a gate electrode electrically connected to a gate line extending in a first direction, an active pattern overlapping with the gate electrode, a source electrode disposed on the active pattern and electrically connected to a data line extending in a second direction crossing the first direction, and a drain electrode spaced apart from the source electrode. The thin film transistor substrate further includes an organic layer disposed on the switching element, a first electrode disposed on the organic layer, and a second electrode overlapping with the first electrode, and electrically connected to the drain electrode. A thickness of the second electrode is thicker than a thickness of the first electrode.
Abstract:
A liquid crystal display panel includes a base substrate, a first step difference compensating pattern, a gate metal pattern, a semiconductor pattern, a source electrode, a drain electrode, a pixel electrode and a color filter. The first step difference compensating pattern is disposed on the base substrate and includes an inorganic material. The gate metal pattern is disposed on the first step difference compensating pattern and includes a gate electrode and a gate line electrically connected to the gate electrode. The semiconductor pattern is overlapped with the gate electrode. The source electrode is electrically connected to the semiconductor pattern. The drain electrode is electrically connected to the semiconductor pattern and is spaced apart from the source electrode. The pixel electrode is electrically connected to the drain electrode. The color filter is overlapped with the pixel electrode.
Abstract:
A thin-film transistor substrate includes a base substrate, a gate line, a data line, a thin-film transistor, an organic insulating pattern and a common electrode. The base substrate includes a plurality of pixel areas. The gate line is disposed on the base substrate, and the gate line is extended in a first direction. The data line is disposed on the gate line, and the data line is extended in a second direction crossing the first direction. The thin-film transistor is connected to the gate line and the data line. The organic insulating pattern covers the data line and the thin-film transistor, and the organic insulating pattern includes an opening overlapping with the pixel areas. The common electrode is disposed on the base substrate. Thus, an organic insulating layer in a pixel area may be partially removed, so that a yellowish screen may be prevented, thereto improve a display quality. In addition, an organic insulating pattern may be formed on a data pattern, a coupling capacitance between the data pattern and a common electrode may be prevented or decreased, thereto prevent a data signal delay.
Abstract:
A liquid crystal display device includes an insulation substrate including a transmissive area and a reflective area, an organic layer positioned on the insulation substrate, and including a triangular pattern in the reflective area, a reflective electrode including reflective patterns corresponding to the triangular pattern of the organic layer in the reflective area, a color filter layer positioned on the reflective electrode, and including an opening for exposing a partial area of the reflective pattern, and a transparent layer disposed inside the opening of the color filter layer.
Abstract:
A thin film transistor array panel includes a gate line, a gate insulating layer that covers the gate line, a semiconductor layer that is disposed on the gate insulating layer, a data line and drain electrode that are disposed on the semiconductor layer, a passivation layer that covers the data line and drain electrode and has a contact hole that exposes a portion of the drain electrode, and a pixel electrode that is electrically connected to the drain electrode through the contact hole. The data line and drain electrode each have a double layer that includes a lower layer of titanium and an upper layer of copper, and the lower layer is wider than the upper layer, and the lower layer has a region that is exposed. The gate insulating layer may have a step shape.
Abstract:
A thin film transistor substrate according to an embodiment of the present invention includes: an insulation substrate; a gate line formed on the insulation substrate; a first interlayer insulating layer formed on the gate line; a data line and a gate electrode formed on the first interlayer insulating layer; a gate insulating layer formed on the data line and gate electrode; a semiconductor formed on the gate insulating layer and overlapping the gate electrode; a second interlayer insulating layer formed on the semiconductor; a first connection formed on the second interlayer insulating layer and electrically connecting the gate line and the gate electrode to each other; a drain electrode connected to the semiconductor; a pixel electrode connected to the drain electrode; and a second connection connecting the data line and the semiconductor to each other.
Abstract:
A method for forming a thin film according to an exemplary embodiment of the present invention includes forming the thin film at a power density in the range of approximately 1.5 to approximately 3 W/cm2 and at a pressure of an inert gas that is in the range of approximately 0.2 to approximately 0.3 Pa. This process results in an amorphous metal thin film barrier layer that prevents undesired diffusion from adjacent layers, even when this barrier layer is thinner than many conventional barrier layers.
Abstract:
A thin film transistor array panel is provided and includes a gate line, a gate insulating layer covering the gate line, a semiconductor layer disposed on the gate insulating layer, and a data line and a drain electrode disposed on the semiconductor layer. The data line and the drain electrode have a dual-layered structure including a lower layer and an upper layer with the lower layer having a first portion protruded outside the upper layer and the semiconductor layer having a second portion protruded outside the edge of the lower layer.