Abstract:
A semiconductor device includes a first transistor in a first region of a substrate and a second transistor in a second region of the substrate. The first transistor includes multiple first semiconductor patterns; a first gate electrode; a first gate dielectric layer; a first source/drain region; and an inner-insulating spacer. The second transistor includes multiple second semiconductor patterns; a second gate electrode; a second gate dielectric layer; and a second source/drain region. The second gate dielectric layer extends between the second gate electrode and the second source/drain region and is in contact with the second source/drain region. The first source/drain region is not in contact with the first gate dielectric layer.
Abstract:
An semiconductor device is provided. A fin is disposed on a substrate, extending in a lengthwise direction. A first recess is disposed on a sidewall of the fin so that the fin and the first recess is arranged in a straight line along the lengthwise direction. A gate structure crosses the fin in the first direction crossing the lengthwise direction. A spacer is disposed on sidewalk of the gate structure. A source/drain region is disposed in the first recess. The source/drain region is formed under the spacer. A silicide layer is disposed on the source/drain region. The silicide layer and the source/drain region fill the first recess.
Abstract:
A semiconductor device includes channels, a gate structure, and a source/drain layer. The channels are disposed at a plurality of levels, respectively, and spaced apart from each other in a vertical direction on an upper surface of a substrate. The gate structure is disposed on the substrate, at least partially surrounds a surface of each of the channels, and extends in a first direction substantially parallel to the upper surface of the substrate. The source/drain layer is disposed at each of opposite sides of the gate structure in a second direction substantially parallel to the upper surface of the substrate and substantially perpendicular to the first direction and is connected to sidewalls of the channels. A length of the gate structure in the second direction changes along the first direction at a first height from the upper surface of the substrate in the vertical direction.
Abstract:
A semiconductor device includes a first fin structure disposed on a substrate. The first fin structure extends in a first direction. A first sacrificial layer pattern is disposed on the first fin structure. The first sacrificial layer pattern includes a left portion and a right portion arranged in the first direction. A dielectric layer pattern is disposed on the first fin structure and interposed between the left and right portions of the first sacrificial layer pattern. A first active layer pattern extending in the first direction is disposed on the first sacrificial layer pattern and the dielectric layer pattern. A first gate electrode structure is disposed on a portion of the first active layer pattern. The portion of the first active layer is disposed on the dielectric layer pattern. The first gate electrode structure extends in a second direction crossing the first direction.
Abstract:
A semiconductor device is provided. A substrate includes a fin. The fin extends in a first direction. A gate structure is disposed on a first region of the fin. The gate structure extends in a second direction crossing the first direction. A source/drain is disposed on a second region of the fin. The first source/drain is disposed on at least one sidewall of the gate structure. A top surface of the first region is lower than a top surface of the second region.
Abstract:
A method of manufacturing a semiconductor device includes forming a fin structure on a substrate. A sacrificial layer pattern is formed on the fin structure. An active layer pattern is formed on the sacrificial layer pattern. A dummy gate pattern is formed on the active layer pattern. A spacer is formed on the dummy gate pattern. A source/drain structure is formed on the active layer pattern using an epitaxial growth process. An interlayer dielectric layer is formed on the dummy gate pattern and the active layer pattern. The interlayer dielectric layer is planarized to expose the dummy gate pattern. The dummy gate pattern is removed to expose the active layer pattern and the sacrificial layer pattern. The exposed sacrificial layer pattern is removed to form a through-hole between the exposed active layer pattern and the fin structure, the second portion of the sacrificial layer pattern is not removed.
Abstract:
A semiconductor device includes channels, a gate structure, and a source/drain layer. The channels are disposed at a plurality of levels, respectively, and spaced apart from each other in a vertical direction on an upper surface of a substrate. The gate structure is disposed on the substrate, at least partially surrounds a surface of each of the channels, and extends in a first direction substantially parallel to the upper surface of the substrate. The source/drain layer is disposed at each of opposite sides of the gate structure in a second direction substantially parallel to the upper surface of the substrate and substantially perpendicular to the first direction and is connected to sidewalls of the channels. A length of the gate structure in the second direction changes along the first direction at a first height from the upper surface of the substrate in the vertical direction.
Abstract:
Semiconductor devices are provided. A semiconductor device includes a substrate and a gate structure on the substrate. The semiconductor device includes a channel on the substrate. The semiconductor device includes a source/drain layer on the channel. Moreover, the semiconductor device includes a spacer on a sidewall of the gate structure. The spacer includes a central portion overlapping the channel in a vertical direction, and a protrusion portion protruding from the central portion. Related methods of manufacturing semiconductor devices are also provided.
Abstract:
A semiconductor device includes channels, a gate structure, and a source/drain layer. The channels are disposed at a plurality of levels, respectively, and spaced apart from each other in a vertical direction on an upper surface of a substrate. The gate structure is disposed on the substrate, at least partially surrounds a surface of each of the channels, and extends in a first direction substantially parallel to the upper surface of the substrate. The source/drain layer is disposed at each of opposite sides of the gate structure in a second direction substantially parallel to the upper surface of the substrate and substantially perpendicular to the first direction and is connected to sidewalls of the channels. A length of the gate structure in the second direction changes along the first direction at a first height from the upper surface of the substrate in the vertical direction.
Abstract:
An semiconductor device is provided. A fin is disposed on a substrate, extending in a lengthwise direction. A first recess is disposed on a sidewall of the fin so that the fin and the first recess is arranged in a straight line along the lengthwise direction. A gate structure crosses the fin in the first direction crossing the lengthwise direction. A spacer is disposed on sidewalk of the gate structure. A source/drain region is disposed in the first recess. The source/drain region is formed under the spacer. A silicide layer is disposed on the source/drain region. The silicide layer and the source/drain region fill the first recess.