Abstract:
A diffusion barrier and a method to form the diffusion bather are disclosed. A trench structure is formed in an Inter Layer Dielectric (ILD). The ILD comprises a dielectric matrix having a first density. A dopant material layer is formed on the trench structure in which the dopant material layer comprises atoms of at least one of a rare-earth element. The ILD and the trench structure are annealed to form a dielectric matrix comprising a second density in one or more regions of the ILD on which the dopant material layer was formed that is greater than the first density. After annealing, the dielectric matrix comprising the second density includes increased bond lengths of oxygen-silicon bonds and/or oxygen-semiconductor bonds, increased bond angles of oxygen-silicon bonds and/or oxygen-semiconductor material bonds, and pores in the dielectric matrix are sealed compared to the dielectric matrix comprising the first density.
Abstract:
A stack for a semiconductor device and a method for making the stack are disclosed. The stack includes a plurality of sacrificial layers in which each sacrificial layer has a first lattice parameter; and at least one channel layer that has a second lattice parameter in which the first lattice parameter is less than or equal to the second lattice parameter, and each channel layer is disposed between and in contact with two sacrificial layers and includes a compressive strain or a neutral strain based on a difference between the first lattice parameter and the second lattice parameter.
Abstract:
A method is disclosed to form a metal-oxysilicate diffusion barrier for a damascene metallization. A trench is formed in an Inter Layer Dielectric (ILD) material. An oxysilicate formation-enhancement layer comprising silicon, carbon, oxygen, a constituent component of the ILD, or a combination thereof, is formed in the trench. A barrier seed layer is formed on the oxysilicate formation-enhancement layer comprising an elemental metal selected from a first group of elemental metals in combination with an elemental metal selected from a second group of elemental metals. An elemental metal in the second group is immiscible in copper or an alloy thereof, has a diffusion constant greater than a self-diffusion of copper or an alloy thereof; does not reducing silicon-oxygen bonds during oxysilicate formation; and promotes adhesion of copper or an alloy of copper to the metal-oxysilicate barrier diffusion layer. The structure is then annealed to form a metal-oxysilicate diffusion barrier.
Abstract:
A damascene interconnect structure may be formed by forming a trench in an ILD. A diffusion barrier may be deposited on trench surfaces, followed by a first liner material. The first liner material may be removed from a bottom surface of the trench. A second liner material may be directionally deposited on the bottom. A conductive seed layer may be deposited on the first and second liner materials, and a conductive material may fill in the trench. A CMP process can remove excess material from the top of the structure. A damascene interconnect may include a dielectric having a trench, a first liner layer arranged on trench sidewalls, and a second liner layer arranged on a trench bottom. A conductive material may fill the trench. The first liner material may have low wettability and the second liner material may have high wettability with respect to the conductive material.