Abstract:
Provided are a CMOS transistor, a semiconductor device having the transistor, and a semiconductor module having the device. The CMOS transistor may include first and second interconnection structures respectively disposed in first and second regions of a semiconductor substrate. The first and second regions of the semiconductor substrate may have different conductivity types. The first and second interconnection structures may be disposed on the semiconductor substrate. The first interconnection structure may have a different stacked structure from the second interconnection structure. The CMOS transistor may be disposed in the semiconductor device. The semiconductor device may be disposed in the semiconductor module.
Abstract:
A semiconductor device may include a plurality of first active fins protruding from a substrate, each of the first active fins extending in a first direction; a second active fin protruding from the substrate; and a plurality of respective first fin-field effect transistors (finFETs) on the first active fins. Each of the first finFETs includes a first gate structure extending in a second direction perpendicular to the first direction, and the first gate structure includes a first gate insulation layer and a first gate electrode. The first finFETs are formed on a first region of the substrate and have a first metal oxide layer as the first gate insulation layer, and a second finFET is formed on the second active fin on a second region of the substrate, and the second finFET does not include a metal oxide layer, but includes a second gate insulation layer that has a bottom surface at the same plane as a bottom surface of the first metal oxide layer.
Abstract:
A method of manufacturing a semiconductor device, a semiconductor device and systems incorporating the same include transistors having a gate metal doped with impurities. An altered work function of the transistor may alter a threshold voltage of the transistor. In certain embodiments, a gate metal of a first MOSFET is doped with impurities. A gate metal of a second MOSFET may be left undoped, doped with the same impurities with a different concentration, and/or doped with different impurities. In some embodiments, the MOSFETs are FinFETs, and the doping may be a conformal doping.
Abstract:
A method of manufacturing a semiconductor device, a semiconductor device and systems incorporating the same include transistors having a gate metal doped with impurities. An altered work function of the transistor may alter a threshold voltage of the transistor. In certain embodiments, a gate metal of a first MOSFET is doped with impurities. A gate metal of a second MOSFET may be left undoped, doped with the same impurities with a different concentration, and/or doped with different impurities. In some embodiments, the MOSFETs are FinFETs, and the doping may be a conformal doping