Abstract:
A cooking apparatus including an enamel coating layer having an improved cleaning efficiency and a manufacturing method therefor are provided. The cooking apparatus includes a cooking compartment configured to accommodate a cooking object, a door configured to open and close the cooking compartment, and an enamel coating layer provided on a surface of the cooking compartment. The enamel coating layer includes, in percent (%) by weight of the entire composition, 5% or less (excluding 0%) of a silicon dioxide (SiO2), 10% to 20% of an aluminum oxide (Al2O3), 10% to 20% of a phosphorous pentoxide (P2O5), 5% to 15% of a rare earth oxide, and 5% to 10% of a ferric oxide (Fe2O3).
Abstract:
A method of manufacturing a semiconductor light emitting device having a multi-cell array, including: sequentially forming a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer on a substrate; etching and removing portions of the second conductive semiconductor layer and the active layer so as to expose portions of an upper surface of the first conductive semiconductor layer corresponding to respective regions of the second conductive semiconductor layer spaced apart from one another; and separating light emitting cells by partially etching the exposed portions of the first conductive semiconductor layer, wherein the separating of the light emitting cells is not performed at an edge portion of the substrate.
Abstract:
There is provided a semiconductor device comprising a first semiconductor chip which includes a first chip substrate, and a first through via penetrating the first chip substrate, a second semiconductor chip disposed on the first semiconductor chip, and includes a second chip substrate, and a second through via penetrating the second chip substrate, and a connecting terminal disposed between the first semiconductor chip and the second semiconductor chip to electrically connect the first through via and the second through via. The semiconductor device further comprising an inter-chip molding material which includes a filling portion that fills between the first semiconductor chip and the second semiconductor chip and encloses the connecting terminal, an extension portion that extends along at least a part of a side surface of the second semiconductor chip, and a protruding portion protruding from the extension portion.
Abstract:
A semiconductor device according to example embodiments of inventive concepts may include a substrate, source/drain regions extending perpendicular to an upper surface of the substrate, a plurality of nanosheets on the substrate and separated from each other, and a gate electrode and a gate insulating layer on the substrate. The nanosheets define channel regions that extend in a first direction between the source/drain regions. The gate electrode surrounds the nanosheets and extends in a second direction intersecting the first direction. The gate insulating layer is between the nanosheets and the gate electrode. A length of the gate electrode in the first direction may be greater than a space between adjacent nanosheets among the nanosheets.
Abstract:
A semiconductor device according to example embodiments of inventive concepts may include a substrate, source/drain regions extending perpendicular to an upper surface of the substrate, a plurality of nanosheets on the substrate and separated from each other, and a gate electrode and a gate insulating layer on the substrate. The nanosheets define channel regions that extend in a first direction between the source/drain regions. The gate electrode surrounds the nanosheets and extends in a second direction intersecting the first direction. The gate insulating layer is between the nanosheets and the gate electrode. A length of the gate electrode in the first direction may be greater than a space between adjacent nanosheets among the nanosheets.
Abstract:
A semiconductor package includes a first substrate including a circuit pattern and a dummy pattern on an upper face of the first substrate, a solder ball, a second substrate on the first substrate, and an underfill material layer between the first and second substrates. The underfill material layer wraps around the solder ball. The dummy pattern is not electrically connected to the circuit pattern. The first substrate includes a solder resist layer on the circuit pattern and the dummy pattern. The solder resist layer includes a first opening for exposing at least a part of the circuit pattern. The solder ball is in the first opening and electrically insulated from the dummy pattern by the solder resist layer. The second substrate is electrically connected to the first substrate by the solder ball. The second substrate is electrically insulated from the dummy pattern by the solder resist layer.
Abstract:
The present disclosure provides a magazine supporting equipment for supporting a magazine with multiple input ports. The magazine supporting equipment comprises a contact plate, a first sidewall plate, and a second sidewall plate. The contact plate is in contact with the magazine. The first sidewall plate extends vertically from one end of the contact plate. The second sidewall plate parallel is to the first sidewall plate and extends vertically from one end to the other end of the contact plate. The first sidewall plate extends along at least a part of a first sidewall of the magazine. The second sidewall plate extends along at least a part of a second sidewall of the magazine. The first sidewall plate and the second sidewall plate include control openings through which gas flows in and out.
Abstract:
A semiconductor light emitting device includes a conductive substrate, a light emitting laminate including a second conductivity type semiconductor layer, an active layer, and a first conductivity type semiconductor layer stacked on the conductive substrate, a first electrode layer electrically connected to the first conductivity type semiconductor layer, a second electrode layer between the conductive substrate and the second conductivity type semiconductor layer, the second electrode layer being electrically connected to the second conductivity type semiconductor layer, and a passivation layer between the active layer and the second electrode layer, the passivation layer covering at least a lateral surface of the active layer of the light emitting laminate.
Abstract:
There is provided a semiconductor device comprising a first semiconductor chip which includes a first chip substrate, and a first through via penetrating the first chip substrate, a second semiconductor chip disposed on the first semiconductor chip, and includes a second chip substrate, and a second through via penetrating the second chip substrate, and a connecting terminal disposed between the first semiconductor chip and the second semiconductor chip to electrically connect the first through via and the second through via. The semiconductor device further comprising an inter-chip molding material which includes a filling portion that fills between the first semiconductor chip and the second semiconductor chip and encloses the connecting terminal, an extension portion that extends along at least a part of a side surface of the second semiconductor chip, and a protruding portion protruding from the extension portion.
Abstract:
A refrigerator includes a water tank which stores water, a carbon dioxide cylinder which stores carbon dioxide, a dispenser module which accommodates an external container and supplies the carbon dioxide and the water to the external container, and a controller which supplies the water to the external container and supplies the carbon dioxide to the external container when supplying the water is completed.