Abstract:
Disclosed are a walking assistance robot and a method of controlling the walking assistance robot. The control method includes collecting motion information by sensing or measuring a motion of at least one joint, determining a motion state of the at least one joint based on the sensed or measured motion of the at least one joint, and controlling the walking assistance robot based on the determined motion state of the at least one joint.
Abstract:
Disclosed are a walking assistance robot and a method of controlling the walking assistance robot. The control method includes collecting motion information by sensing or measuring a motion of at least one joint, determining a motion state of the at least one joint based on the sensed or measured motion of the at least one joint, and controlling the walking assistance robot based on the determined motion state of the at least one joint.
Abstract:
A method and apparatus for recognizing a gait motion are provided. The apparatus may set a gait motion recognition period based on measured right and left hip joint angle information, may input, to a trained neural network, right and left hip joint angle information and vertical acceleration information measured during the gait motion recognition period, and may recognize a gait motion.
Abstract:
Disclosed herein is a method of converting and reconstructing a signal, including: at a data generator, acquiring signal-analyzed data from an original signal, wherein the signal-analyzed data includes at least one feature point acquired from the original signal; transmitting and receiving the signal-analyzed data and at least one reference data corresponding to the signal-analyzed data; and reconstructing the original signal based on the signal-analyzed data and the at least one reference data to acquire a reconstructed signal.
Abstract:
Disclosed herein is a surgical robot including a slave device performing a surgical operation upon a patient and a master device controlling the surgical operation of the slave device. The slave device includes an image capture unit including a first lighting unit radiating visible light, a second lighting unit radiating UV light, and a camera capturing a visible-light image and a surgical tool coated with a UV reactive material emitting light in response to UV light radiated by the second lighting unit.
Abstract:
A walking assistant device may calculate a walking cycle by measuring only motion of a specific joint without a force/torque sensor (F/T sensor) of a foot, and a method of controlling the walking assistant device. The method may include measuring motion of a hinge to which different support frames are connected; overlapping a reference trajectory corresponding to the measured motion and modulation trajectories that have been modulated from the reference trajectory; correcting the overlapping trajectory to correspond to the measured motion; determining assistant torque corresponding to a phase of the corrected trajectory; and providing the determined assistant torque to the support frame.
Abstract:
A master console includes handles configured to control robotic surgical instruments of a slave robot, force/torque detectors configured to detect forces applied to the handles by an operator, a force compensator configured to generate force control signals that cancel out the forces applied to the handles by the operator, and a master controller configured to drive at least one joint of each of the handles in order to control motion of the handles based on motion control signals and the generated force control signals.
Abstract:
A walking assistance method may include: computing an amount of exercise of a user based on a biosignal of the user; adjusting a pattern of an assist parameter based on the amount of exercise; and/or generating a force corresponding to the amount of exercise, based on the adjusted pattern. A walking assistance apparatus may include: a pattern adjuster configured to compute an amount of exercise of a user based on a biosignal of the user; and/or a driver configured to generate a force corresponding to the amount of exercise based on a pattern of an assist parameter based on the amount of exercise.
Abstract:
A surgical robot system may include a slave device having a surgical instrument; and a master device configured to transmit a control signal to the surgical instrument. The slave device may include a guide tube to which the surgical instrument is coupled; and a controller operating the surgical instrument in response to the control signal transmitted from the master device, and operate the guide tube so as to move the surgical instrument to a target position if the target position of the surgical instrument according to the control signal corresponds to a position out of a range of a current working space for the surgical instrument.
Abstract:
A surgical robot system may include a slave device provided with surgical tools and a master device remotely controlling motion of the surgical tools. The master device may include handles controlling the motion of the surgical tools, a master external force estimator estimating external force applied to the handles, a force compensator generating a first force control signal to cancel out the estimated external force, and a master controller moving and rotating respective joints of the handles in such a way that the external force applied to the handles is canceled out using the generated force control signal.