Abstract:
A memory controller manages a refresh. The memory controller is configured to communicate with a memory device including a memory cell array that include of a plurality of word lines may include a scheduler configured to control commands provided to the plurality of word lines, an error correction code engine that has a register including N entries and is configured to store, in the register, a first parameter which includes address information and active number information of N word lines among the plurality of word lines based on counting the number of actives of the plurality of word lines, a comparator configured to compare the first parameter with a threshold parameter, and a refresh management (RFM) decision circuit configured to determine refresh frequency of the plurality of word lines based on results output from the comparator and to generate an RFM command.
Abstract:
The inventive concepts relate to an operation method of an error correction decoder correcting an error of data read from a nonvolatile memory. The operation method may include receiving the data from the nonvolatile memory, performing a first error correction with respect to the received data in a simplified mode, and performing, when the first error correction fails in the simplified mode, a second error correction with respect to the received data in a full mode. When the first error correction of the simplified mode is performed, a part of operations of the second error correction of the full mode may be omitted.
Abstract:
A semiconductor memory device includes a memory cell array including a plurality of memory cell rows, a row hammer management circuit, and a refresh control circuit. The row hammer management circuit captures row addresses accompanied by first active commands randomly selected from active commands, each of which has a first selection probability that is uniform, from an external memory controller during a reference time interval, and selects at least one row address from among the captured row addresses as a hammer address a number of times proportional to access counts of an active command corresponding to the at least one row address during the reference time interval. The refresh control circuit receives the hammer address and performs a hammer refresh operation on one or more victim memory cell rows which are physically adjacent to a memory cell row corresponding to the hammer address.
Abstract:
A semiconductor memory device includes a memory cell array, an error correction circuit and a control logic circuit. The error correction circuit includes an error correction code (ECC) decoder to perform an ECC decoding on a codeword including a main data and a parity data, read from a target page of the memory cell array to correct errors in the read codeword. The control logic circuit controls the error correction circuit based on a command and address from an external memory controller. The ECC decoder has t-bit error correction capability, generates a syndrome based on the codeword using a parity check matrix, performs t iterations during (t−2) cycles to generate an error locator polynomial based on the syndrome, searches error positions in the codeword based on the error locator polynomial and corrects the errors in the codeword based on the searched error positions.
Abstract:
Provided are a memory system and an operating method thereof. The operating method reads an observation memory cell at least one time with different read voltages to configure a first read data symbol, reads a plurality of interference memory cells adjacent to the observation memory cell at least one time with different read voltages to configure second read data symbols, and determines a logical value of the observation memory cell based on the first read data symbol and the second read data symbols.
Abstract:
A semiconductor memory device includes a memory cell array and a cyclic redundancy check (CRC) engine. The memory cell array includes a plurality of volatile memory cells coupled to respective ones of a plurality of word-lines and respective ones of a plurality of bit-lines. The CRC engine, during a memory operation on the memory cell array, detects an error in a main data and a system parity data provided from a memory controller external to the semiconductor memory device through a link, generates an error flag indicating whether the detected error corresponds to either a first type of error associated with the link or a second type of error associated with the volatile memory cells based on the system parity data and transmit the error flag to the memory controller.
Abstract:
A memory controller configured to control a memory module, the memory controller including processing circuitry configured to perform ECC decoding on a read codeword from the memory module using a first portion of a parity check matrix to generate a first syndrome and a second syndrome, determine a type of error in the read codeword based on the second syndrome and a decision syndrome, the decision syndrome corresponding to a sum of the first syndrome and the second syndrome, and output a decoding status flag indicating the type of error.
Abstract:
An operating method of a controller includes selecting bits of code word to be punctured; detecting locations of incapable bits of an input word based on locations of the bits to be punctured and a structure of a generation matrix calculation unit; refreezing the input word such that frozen bits and incapable bits of the input word overlap; generating input word bits by replacing information word bits with frozen bits based on the refreezing result; generating the code word by performing generation matrix calculation on the input word bits; generating output bits by puncturing the code word based on locations of the bits to be punctured; and transmitting the output bits to a nonvolatile memory device.
Abstract:
Disclosed is a memory device which includes a memory cell array that stores first data and first parity data, an error correction code (ECC) circuit that performs ECC decoding based on the first data and the first parity data and outputs error-corrected data and a decoding status flag, and an input/output circuit that provides the error-corrected data and the decoding status flag to a memory controller. The ECC circuit includes a syndrome generator that generates a syndrome based on the first data and the first parity data, a syndrome decoding circuit that decodes the syndrome to generate an error vector, a correction logic circuit that generates the error-corrected data based on the error vector and the first data, and a fast decoding status flag (DSF) generator that generates the decoding status flag based on the syndrome, without the error vector.
Abstract:
An error correction circuit, including an error correction code (ECC) encoder configured to generate parity data corresponding to main data based on a parity generation matrix, and to output a codeword including the main data and the parity data to a plurality of memory devices; and an ECC decoder configured to: read the codeword from the plurality of memory devices, generate a syndrome corresponding to the codeword based on a parity check matrix, detect an error pattern based on the syndrome, generate a plurality of estimation syndromes corresponding to the error pattern using a plurality of partial sub-matrices included in the parity check matrix, and correct an error included in the read codeword based on a result of a comparison between the syndrome and the plurality of estimation syndromes.