Abstract:
A semiconductor device capable of adjusting profiles of a gate electrode and a gate spacer by implanting or doping an element semiconductor material into an interlayer insulating layer may be provided. The semiconductor device may include a gate spacer on a substrate, the gate spacer defining a trench, a gate electrode filling the trench, and an interlayer insulating layer on the substrate, which surrounds the gate spacer, and at least a portion of which includes germanium.
Abstract:
There is provided a semiconductor device capable of adjusting profiles of a gate electrode and a gate spacer using a hybrid interlayer insulating film. The semiconductor device includes a gate electrode on a substrate, a gate spacer being on a sidewall of the gate electrode and including an upper portion and a lower portion, a lower interlayer insulating film being on the substrate and overlapping with the lower portion of the gate spacer, and an upper interlayer insulating film being on the lower interlayer insulating film and overlapping with the upper portion of the gate spacer, wherein the lower interlayer insulating film is not interposed between the upper interlayer insulating film and the upper portion of the gate spacer.
Abstract:
A semiconductor device is provided which includes a first fin-type pattern including a first side surface and a second side surface opposite to each other, a first trench of a first depth adjacent to the first side surface, a second trench of a second depth adjacent to the second side surface. The second depth differs from the first depth, and a first field insulating film partially fills the first trench and a second field insulating film partially fills the second trench. The first fin-type pattern has a lower portion, and an upper portion having a narrower width than the lower portion, and has a first stepped portion on a boundary between the upper portion and the lower portion. The first field insulating film includes a first lower field insulating film in contact with the lower portion, and a first upper field insulating film in contact with the upper portion.
Abstract:
A semiconductor device includes a channel layer over an active region, first and second field regions adjacent the active region, and a gate structure over the channel layer and portions of the first and second field regions. The first and second field regions include grooves adjacent respective sidewalls of the channel layer, and bottom surfaces of the grooves are below a bottom surface of the channel layer.
Abstract:
A semiconductor device includes a stressor and an insulating pattern. A device isolation layer is formed to define an active area on a substrate. A first gate electrode is formed on the active area. A second gate electrode is formed on the device isolation layer. A trench is formed in the active area between the first gate electrode and the second gate electrode. A stressor is formed in the trench. A cavity formed between the stressor and the device isolation layer and adjacent to the second gate electrode is disposed. An insulating pattern is formed in the cavity.
Abstract:
A semiconductor device capable of adjusting profiles of a gate electrode and a gate spacer by implanting or doping an element semiconductor material into an interlayer insulating layer may be provided. The semiconductor device may include a gate spacer on a substrate, the gate spacer defining a trench, a gate electrode filling the trench, and an interlayer insulating layer on the substrate, which surrounds the gate spacer, and at least a portion of which includes germanium.
Abstract:
A semiconductor device is provided that includes a deep trench defining an active region, and a fin-type pattern protruding within the active region. The fin-type pattern having a lower portion, an upper portion of a narrower width than the lower portion, and a first stepped portion formed at a boundary between the upper portion and the lower portion. The device also includes a first field insulating film surrounding the lower portion and a second field insulating film formed on the first field insulating film and partially surrounding the upper portion.
Abstract:
A semiconductor device is provided that includes a deep trench defining an active region, and a fin-type pattern protruding within the active region. The fin-type pattern having a lower portion, an upper portion of a narrower width than the lower portion, and a first stepped portion formed at a boundary between the upper portion and the lower portion. The device also includes a first field insulating film surrounding the lower portion and a second field insulating film formed on the first field insulating film and partially surrounding the upper portion.
Abstract:
A semiconductor device includes a stressor and an insulating pattern. A device isolation layer is formed to define an active area on a substrate. A first gate electrode is formed on the active area. A second gate electrode is formed on the device isolation layer. A trench is formed in the active area between the first gate electrode and the second gate electrode. A stressor is formed in the trench. A cavity formed between the stressor and the device isolation layer and adjacent to the second gate electrode is disposed. An insulating pattern is formed in the cavity.