Abstract:
Provided is a hydrogen peroxide sensitive metal nanoparticle including: a metal nanoparticle including a biocompatible metal and a hydrogen peroxide reactive ion which is bonded to a surface of the metal nanoparticle and is oxidized by hydrogen peroxide.
Abstract:
Provided are a conductive layered structure including a DNA hydrogel and a composite layer disposed on the DNA hydrogel. The composite layer may include a polymer electrolyte and a conductive material. Also provided are an electrode and a supercapacitor, each including the conductive layered structure. Further provided is a method of manufacturing the conductive layered structure. Thus, a biocompatible, implantable electrode having a large specific surface area and a high conductivity may be manufactured through simple processes.
Abstract:
Provided is an example method of preparing a porous metal oxide structure, the method including adsorbing a metal oxide precursor onto a template having a networked structure of branched polynucleotides, decomposing and converting the adsorbed metal oxide precursor into a metal oxide, and removing the template. The networked structure of branched polynucleotides may be used as a template so as to facilitate control of the pore structure of a porous metal oxide structure.
Abstract:
An electro-conductive hydrogel composite material that may be suitable as an artificial skin satisfies all four requirements of artificial skin, namely, flexibility, electrical conductivity, healing property, and biocompatibility. The electro-conductive hydrogel composite material includes a hydrogel composition including water and a cross-linkable polymer which reversibly forms cross-linkage by hydrogen bonding; and an electro-conductive material dispersed in the hydrogen bond-based hydrogel.
Abstract:
A nucleic acid construct, a method of preparing a nanoparticle by using the nucleic acid construct, and a nanoparticle and nanoparticle complex prepared using the method. Various types of metal nanoparticles may be efficiently prepared using the template for preparing a nanoparticle and the nanoparticle prepared using the template.
Abstract:
Provided is a method of preparing a porous metal material. The method includes: obtaining a composite of a DNA hydrogel and a metal precursor by mixing the DNA hydrogel and the metal precursor; and reducing the composite of the DNA hydrogel and the metal precursor.