Abstract:
A wiring structure includes a first insulation layer, a plurality of wiring patterns, a protection layer pattern and a second insulation layer. The first insulation layer may be formed on a substrate. A plurality of wiring patterns may be formed on the first insulation layer, and each of the wiring patterns may include a metal layer pattern and a barrier layer pattern covering a sidewall and a bottom surface of the metal layer pattern. The protection layer pattern may cover a top surface of each of the wiring patterns and including a material having a high reactivity with respect to oxygen. The protection layer pattern may cover a top surface of each of the wiring patterns and including a material having a high reactivity with respect to oxygen.
Abstract:
A wiring structure includes a first insulation layer, a plurality of wiring patterns, a protection layer pattern and a second insulation layer. The first insulation layer may be formed on a substrate. A plurality of wiring patterns may be formed on the first insulation layer, and each of the wiring patterns may include a metal layer pattern and a barrier layer pattern covering a sidewall and a bottom surface of the metal layer pattern. The protection layer pattern may cover a top surface of each of the wiring patterns and including a material having a high reactivity with respect to oxygen. The protection layer pattern may cover a top surface of each of the wiring patterns and including a material having a high reactivity with respect to oxygen.
Abstract:
A method of manufacturing a vertical memory device includes forming a first sacrificial layer on a substrate, the first sacrificial layer including a first insulating material, forming a mold including an insulation layer and a second sacrificial layer alternately and repeatedly stacked on the first sacrificial layer, the insulation layer and the second sacrificial layer including second and third insulating materials, respectively, different from the first insulating material, forming a channel through the mold and the first sacrificial layer, forming an opening through the mold and the first sacrificial layer to expose an upper surface of the substrate, removing the first sacrificial layer through the opening to form a first gap, forming a channel connecting pattern to fill the first gap, and replacing the second sacrificial layer with a gate electrode.
Abstract:
A wiring structure includes a first insulation layer, a plurality of wiring patterns, a protection layer pattern and a second insulation layer. The first insulation layer may be formed on a substrate. A plurality of wiring patterns may be formed on the first insulation layer, and each of the wiring patterns may include a metal layer pattern and a barrier layer pattern covering a sidewall and a bottom surface of the metal layer pattern. The protection layer pattern may cover a top surface of each of the wiring patterns and including a material having a high reactivity with respect to oxygen. The protection layer pattern may cover a top surface of each of the wiring patterns and including a material having a high reactivity with respect to oxygen.
Abstract:
Methods of forming a wiring structure are provided including forming an insulating interlayer on a substrate and forming a sacrificial layer on the insulating interlayer. The sacrificial layer is partially removed to define a plurality of openings. Wiring patterns are formed in the openings. The sacrificial layer is transformed into a modified sacrificial layer by a plasma treatment. The modified sacrificial layer is removed by a wet etching process. An insulation layer covering the wiring patterns is formed on the insulating interlayer. The insulation layer defines an air gap therein between neighboring wiring patterns.
Abstract:
Methods of forming a wiring structure are provided including forming an insulating interlayer on a substrate and forming a sacrificial layer on the insulating interlayer. The sacrificial layer is partially removed to define a plurality of openings. Wiring patterns are formed in the openings. The sacrificial layer is transformed into a modified sacrificial layer by a plasma treatment. The modified sacrificial layer is removed by a wet etching process. An insulation layer covering the wiring patterns is formed on the insulating interlayer. The insulation layer defines an air gap therein between neighboring wiring patterns.
Abstract:
A method of manufacturing a vertical memory device includes forming a first sacrificial layer on a substrate, the first sacrificial layer including a first insulating material, forming a mold including an insulation layer and a second sacrificial layer alternately and repeatedly stacked on the first sacrificial layer, the insulation layer and the second sacrificial layer including second and third insulating materials, respectively, different from the first insulating material, forming a channel through the mold and the first sacrificial layer, forming an opening through the mold and the first sacrificial layer to expose an upper surface of the substrate, removing the first sacrificial layer through the opening to form a first gap, forming a channel connecting pattern to fill the first gap, and replacing the second sacrificial layer with a gate electrode.