Abstract:
An etching method includes providing a plasma of a first treatment gas to an etching-object to form a deposition layer on the etching-object, the first treatment gas including a fluorocarbon gas and an inert gas, and the etching-object including a first region including silicon oxide and a second region including silicon nitride, providing a plasma of an inert gas to the etching-object having the deposition layer thereon to activate an etching reaction of the silicon oxide, wherein a negative direct current voltage is applied to an opposing part that is spaced apart from the etching-object so as to face an etching surface of the etching-object, the opposing part including silicon, and subsequently, providing a plasma of a second treatment gas to remove an etching reaction product, the second treatment gas including an inert gas and an oxygen-containing gas.
Abstract:
A semiconductor device includes an active region in a shape of a fin extending in a first direction, the fin having source/drain regions spaced apart therein, gate structures crossing the fin between the source/drain regions, each including a gate electrode, a first contact structure in electrical contact with a first source/drain region, the first contact structure including a first lower contact and a first upper contact directly thereon, a second contact structure in electrical contact with a gate electrode of a gate structure, the second contact structure including a second lower contact and a second upper contact directly thereon, and a third contact structure in electrical contact with a gate electrode of a second gate structure and in electrical contact with a second source drain region, the third contact structure including a third lower contact and a third upper contact directly thereon.
Abstract:
Disclosed are an apparatus and a method for reducing a ghost touch in an electronic device. According to various embodiments, the electronic device includes a touch screen, and at least one processor implementing the method, which includes detecting touches to the touch screen, and detecting a ghost touch based on at least two of: a time interval between the touches detected through the touch screen, a distance between the touches, and a touch area of the touches.
Abstract:
A semiconductor device includes gates extending in a first direction on a substrate, each gate of the gates including a gate insulation layer, a gate electrode, and a first spacer, first contact plugs contacting the substrate between adjacent ones of the gates, the first contact plugs being spaced apart from sidewalls of corresponding ones of the gates, a second contact plug contacting an upper surface of a corresponding gate electrode, the second contact plug being between first contact plugs, and an insulation spacer in a gap between the second contact plug and an adjacent first contact plug, the insulation spacer contacting sidewalls of the second contact plug and the adjacent first contact plug, and upper surfaces of the second contact plug and the adjacent first contact plug being substantially coplanar with each other.
Abstract:
A semiconductor device includes a first gate pattern and a second gate pattern on a substrate, the first gate pattern having a first height and the second gate pattern having a second height, an insulating pattern on the substrate covering the first and second gate patterns, the insulating pattern including a trench exposing the substrate between the first and second gate patterns, a spacer contacting at least a portion of a sidewall of the insulating pattern within the trench, the spacer spaced apart from the first and second gate patterns and having a third height larger than the first and second heights, and a contact structure filling the trench.
Abstract:
An electronic device comprising: a communication interface; a memory; and at least one processor coupled to the memory and the communication interface, wherein the at least one processor is configured to: detect a change of state of the electronic device; transmit to a secondary electronic device a first information item associated with the change of state of the electronic device; receive a second information item from the secondary electronic device in response to the first information item; and perform an operation based on the secondary information item.
Abstract:
A semiconductor device includes a substrate, a gate structure on the substrate, a first etch stop layer, a second etch stop layer, and an interlayer insulation layer that are stacked on the gate structure, and a contact plug penetrating the interlayer insulation layer, the second etch stop layer, and the first etch stop layer and contacting a sidewall of the gate structure. The contact plug includes a lower portion having a first width and an upper portion having a second width. A lower surface of the contact plug has a stepped shape.
Abstract:
According to various embodiments of the present disclosure, a docking station includes a base housing comprising a first surface having a recessed portion, a second surface directed in an opposite direction to the first surface, and a side surface at least partially surrounding a space between the first surface and the second surface, a slide housing slidably mounted on the recessed portion to open and close at least a part of the recessed portion, and a connection member disposed on the recessed portion, in which as the slide housing slides, the connection member is hidden or exposed, and in a state where the at least the part of the recessed portion is opened, the slide housing is positioned inclined with respect to the first surface or the second surface. The docking station described above may be implemented variously depending on embodiments.
Abstract:
An apparatus and a method for storing and restoring data in an electronic device are provided. In a method for restoring data, an event page including at least one data is generated. Information for the event page is transmitted to a server. When occurrence of a display event is detected, a request signal for at least one event page corresponding to the display event is transmitted to the server. An event page provided from the server is displayed.
Abstract:
A method of manufacturing a wiring includes sequentially forming a first insulation layer, a first layer, and a second layer on a substrate, etching an upper portion of the second layer a plurality of times to form a second layer pattern including a first recess having a shape of a staircase, etching a portion of the second layer pattern and a portion of the first layer under the first recess to form a first layer pattern including a second recess having a shape of a staircase similar to the first recess, etching a portion of the first layer pattern under the second recess to form a first opening exposing a portion of a top surface of the first insulation layer, etching the exposed portion of the first insulation layer to form a second opening through the first insulation layer, and forming a wiring filling the second opening.