Abstract:
A method of displaying for allowing a plurality of application windows to be easily controlled and a display device therefor are provided. A method of displaying a screen on a display device includes displaying a button on a touch screen; splitting the touch screen into a plurality of regions based on the position at which the button is displayed, receiving a touch input to move a displayed button, obtaining a slope value of a line connecting a start point of the touch input to an end point thereof, selecting a region corresponding to the slope value from among the plurality of regions split, and moving the button to a certain position included in a selected region.
Abstract:
An integrated circuit includes a plurality of layers stacked in a first direction, a plurality of unit circuits at least partially overlapping each other in a second direction that is perpendicular to the first direction and configured to operate in parallel with one another, control circuitry configured to generate a control signal to control the plurality of unit circuits, and a multi-layer conducting line configured to transfer the control signal from the control circuitry to the plurality of unit circuits. The multi-layer conducting line may be integrally formed in a wiring layer and a via layer and extends in the second direction. The wiring layer and the via layer may be adjacent to each other.
Abstract:
In an integrated circuit, a first delay locked loop circuit is configured to adjust a phase of a first clock signal input to a first clock input terminal, and to at least one of transmit and receive information based on the phase-adjusted first clock signal. A second delay locked loop circuit is configured to adjust a phase of a second clock signal input to a second clock input terminal, and to at least one of transmit and receive information based on the phase-adjusted second clock signal. A path selection circuit is configured to select, in response to a select signal, one of a first signal path through the first delay locked loop circuit and a second signal path through the second delay locked loop circuit as a signal path for at least one of transmitting and receiving the information.
Abstract:
Provided is an integrated circuit which includes: a plurality of conductive lines extending in a first horizontal direction on a plane separate from a gate line, and including first and second conductive lines; a source/drain contact having a bottom surface connected to a source/drain region, and including a lower source/drain contact and an upper source/drain contact which are connected to each other in a vertical direction; and a gate contact having a bottom surface connected to the gate line, and extending in the vertical direction, in which the upper source/drain contact is placed below the first conductive line, and the gate contact is placed below the second conductive line. A top surface of the lower source/drain contact may be larger than a bottom surface of the upper source/drain contact.
Abstract:
Provided are a voltage control circuit including an assist circuit and a memory device including the voltage control circuit. The memory device includes: a volatile memory cell array, which is connected to a plurality of word lines and includes a memory cell including at least one transistor; and an assist circuit, which is connected to at least one of the plurality of word lines and adjusts a driving voltage level of each of the plurality of word lines, wherein the assist circuit includes a diode N-channel metal oxide semiconductor (NMOS) transistor having a gate and a drain connected to each other.
Abstract:
A semiconductor light-emitting device, and a method of manufacturing the same. The semiconductor light-emitting device includes a first electrode layer, an insulating layer, a second electrode layer, a second semiconductor layer, an active layer, and a first semiconductor layer that are sequentially stacked on a substrate, a first contact that passes through the substrate to be electrically connected to the first electrode layer, and a second contact that passes through the substrate, the first electrode layer, and the insulating layer to communicate with the second electrode layer. The first electrode layer is electrically connected to the first semiconductor layer by filling a contact hole that passes through the second electrode layer, the second semiconductor layer, and the active layer, and the insulating layer surrounds an inner circumferential surface of the contact hole to insulate the first electrode layer from the second electrode layer.
Abstract:
An integrated circuit includes a plurality of layers stacked in a first direction, a plurality of unit circuits at least partially overlapping each other in a second direction that is perpendicular to the first direction and configured to operate in parallel with one another, control circuitry configured to generate a control signal to control the plurality of unit circuits, and a multi-layer conducting line configured to transfer the control signal from the control circuitry to the plurality of unit circuits. The multi-layer conducting line may be integrally formed in a wiring layer and a via layer and extends in the second direction. The wiring layer and the via layer may be adjacent to each other.
Abstract:
Provided are a voltage control circuit including an assist circuit and a memory device including the voltage control circuit. The memory device includes: a volatile memory cell array, which is connected to a plurality of word lines and includes a memory cell including at least one transistor; and an assist circuit, which is connected to at least one of the plurality of word lines and adjusts a driving voltage level of each of the plurality of word lines, wherein the assist circuit includes a diode N-channel metal oxide semiconductor (NMOS) transistor having a gate and a drain connected to each other.
Abstract:
An integrated circuit includes a plurality of layers stacked in a first direction, a plurality of unit circuits at least partially overlapping each other in a second direction that is perpendicular to the first direction and configured to operate in parallel with one another, control circuitry configured to generate a control signal to control the plurality of unit circuits, and a multi-layer conducting line configured to transfer the control signal from the control circuitry to the plurality of unit circuits. The multi-layer conducting line may be integrally formed in a wiring layer and a via layer and extends in the second direction. The wiring layer and the via layer may be adjacent to each other.
Abstract:
Provided are a voltage control circuit including an assist circuit and a memory device including the voltage control circuit. The memory device includes: a volatile memory cell array, which is connected to a plurality of word lines and includes a memory cell including at least one transistor; and an assist circuit, which is connected to at least one of the plurality of word lines and adjusts a driving voltage level of each of the plurality of word lines, wherein the assist circuit includes a diode N-channel metal oxide semiconductor (NMOS) transistor having a gate and a drain connected to each other.