Abstract:
The methods of manufacturing an MRAM device and MRAM devices are provided. The methods may include forming a first electrode on an upper surface of a substrate, forming a first magnetic layer on the first electrode, forming a tunnel barrier structure on the first magnetic layer, forming a second magnetic layer on the tunnel barrier structure, and forming a second electrode on the second magnetic layer. The tunnel barrier structure may include a first tunnel barrier layer and a second tunnel barrier layer that are sequentially stacked on the first magnetic layer and may have different resistivity distributions from each other along a horizontal direction that may be parallel to the upper surface of the substrate.
Abstract:
A method of manufacturing an MRAM device, the method including forming a first magnetic layer on a substrate; forming a first tunnel barrier layer on the first magnetic layer such that the first tunnel barrier layer includes a first metal oxide, the first metal oxide being formed by oxidizing a first metal layer at a first temperature; forming a second tunnel barrier layer on the first tunnel barrier layer such that the second tunnel barrier layer includes a second metal oxide, the second metal oxide being formed by oxidizing a second metal layer at a second temperature that is greater than the first temperature; and forming a second magnetic layer on the second tunnel barrier layer.
Abstract:
A method of manufacturing an MRAM device, the method including forming a first magnetic layer on a substrate; forming a first tunnel barrier layer on the first magnetic layer such that the first tunnel barrier layer includes a first metal oxide, the first metal oxide being formed by oxidizing a first metal layer at a first temperature; forming a second tunnel barrier layer on the first tunnel barrier layer such that the second tunnel barrier layer includes a second metal oxide, the second metal oxide being formed by oxidizing a second metal layer at a second temperature that is greater than the first temperature; and forming a second magnetic layer on the second tunnel barrier layer.
Abstract:
A mobile system includes a first interface configured to transmit a payload in synchronization with a first clock signal through a first channel at a first transfer rate; and a second interface that includes: a payload storage connected to the first channel and configured to receive the payload from the first channel; and a payload receiver connected to the payload storage and configured to receive the payload from the payload storage in synchronization with a second clock at a second transfer rate through a second channel. A length of the second channel is shorter than a length of the first channel, and the first clock signal is asynchronous with the second clock signal.
Abstract:
A MRAM device includes a first insulating interlayer on a substrate including a cell region and a peripheral region, lower electrode contacts extending through the first insulating interlayer of the cell region, a first structure on each of the lower electrode contacts, the first structure including a lower electrode, a magnetic tunnel junction structure, and an upper electrode sequentially stacked, and a capping layer covering surfaces of the first insulating interlayer and the first structure in the cell and peripheral regions, wherein an upper surface of the capping layer on the first insulating interlayer in the peripheral region is higher than an upper surface of the capping layer on the first insulating interlayer between the first structures in the cell region.
Abstract:
A sputtering apparatus includes a chamber configured to provide a space where a deposition process is performed on a substrate, a substrate holder configured to support the substrate within the chamber, and at least one turret-type target assembly located over the substrate, including a plurality of targets mounted thereon and adapted to operatively rotate by a predetermined angle about its longitudinal axis such that any one of the targets is off-axis aligned with respect to a film-deposited surface of the substrate.