Abstract:
A polarizing plate and an optical display apparatus are provided. A polarizing plate includes: a polarizer; and a first retardation layer and a second retardation layer sequentially stacked on a lower surface of the polarizer, and the first retardation layer has a short wavelength dispersion of about 1 to about 1.03, a long wavelength dispersion of about 0.98 to about 1, and an in-plane retardation of about 180 nm to about 220 nm at a wavelength of 550 nm, the second retardation layer has a short wavelength dispersion of about 1 to about 1.1, a long wavelength dispersion of about 0.96 to about 1, and an in-plane retardation Re of about 70 nm to about 120 nm at a wavelength of 550 nm, and a ratio of out-of-plane retardation of the second retardation layer at a wavelength of 550 nm to thickness thereof is about −33 nm/μm to about −15 nm/μm.
Abstract:
A polarizing plate and a display apparatus including the same. The polarizing plate includes: a polarizer and a protective film stacked at least on one surface of the polarizer, wherein the polarizing plate includes at least a depolarization region in an in-plane direction thereof, and the depolarization region has a maximum absorbance of 0.5 to 1.5 in the wavelength range of 380 nm to 420 nm and a light transmittance ratio (ratio of light transmittance at a wavelength of 590 nm to light transmittance at a wavelength of 400 nm) of 1 to 2.
Abstract:
A polarizing plate and an optical display including the same are provided. The polarizing plate is composed of a display region and a non-display region surrounding the display region, and includes: a polarizer; and a bonding layer and a first polarizer protective film sequentially stacked on an upper surface of the polarizer. A light shielding layer includes a UV absorbent material and is embedded in the bonding layer to constitute at least a portion of the non-display region. The light shielding layer is formed on at least one surface of the first polarizer protective film.
Abstract:
A polarizing plate and an optical display apparatus are provided. A polarizing plate includes: a polarizer; and a first retardation layer and a second retardation layer sequentially stacked on a lower surface of the polarizer, and the first retardation layer has a short wavelength dispersion of about 1 to about 1.03, a long wavelength dispersion of about 0.98 to about 1, and an in-plane retardation of about 180 nm to about 220 nm at a wavelength of 550 nm, the second retardation layer has a short wavelength dispersion of about 1 to about 1.1, a long wavelength dispersion of about 0.96 to about 1, and an in-plane retardation Re of about 70 nm to about 120 nm at a wavelength of 550 nm, and a ratio of out-of-plane retardation of the second retardation layer at a wavelength of 550 nm to thickness thereof is about −33 nm/μm to about −15 nm/μm.
Abstract:
An LCD module includes an LCD panel, and a polarizing plate formed on each of the upper and lower surfaces of the LCD panel. The polarizing plate includes a polarizer and a polyester film formed on at least one surface of the polarizer. The polyester film has a difference between the index of refraction in the x-axis direction and the index of refraction in the z-axis direction (nx−nz) of about 0.1 to about 0.18, where nx and nz are the indices of refraction in the x-axis and z-axis directions, respectively, at a wavelength of 550 nm. The LCD module has a CR 45° and a CR 135° of about 1.0% or greater.
Abstract:
A polarizing plate includes a polarizer and a polyester film formed on at least one surface of the polarizer. The polyester film includes a polyester base film and a primer layer formed on at least one surface of the polyester base film. The polyester film contains about 0.1 wt % to about 5 wt % of a UV absorbent. In addition, a liquid crystal display includes the polarizing plate. A method of fabricating a polarizing plate includes preparing a multilayer film containing about 0.1 wt % to about 5 wt % of a UV absorbent, stretching the multilayer film to about 2 to about 10 times its initial length in a transverse direction (TD) to prepare a polyester film, and attaching the polyester film to at least one surface of a polarizer. The multilayer film comprises a polyester base film and a primer layer on at least one surface of the polyester base film.
Abstract:
The present invention relates to a polarizing plate including a polarizer and a polyester film formed on an upper side of the polarizer, wherein the polyester film has a maximum thermal shrink angle of about 10° or less, and any one of a refractive index of x-axis direction nx at a wavelength of 550 nm and a refractive index of y-axis direction ny at a wavelength of 550 nm of about 1.65 or more; a method of preparing the polarizing plate; and a liquid crystal display apparatus comprising the polarizing plate.
Abstract:
A polarizing plate includes a polarizer and a polyester film formed on an upper side of the polarizer. The polyester film has a ratio of MD elongation to TD elongation of about 1:6 to about 1:30. An angle between the transmission axis of the polarizer and the TD of the polyester film ranges from about −7° to about +7°. In some embodiments, a liquid crystal display includes the polarizing plate. The polarizing plate and the liquid crystal display can reduce the occurrence of rainbow spots, realize a high degree of polarization, and exhibit little variation in the retardation and dimensions under high temperature/high humidity conditions.
Abstract:
A polarizing plate includes a polarizer and a polyester film formed on at least one surface of the polarizer. The polyester film includes a polyester base film and a primer layer formed on at least one surface of the polyester base film. The polyester film contains about 0.1 wt % to about 5 wt % of a UV absorbent. In addition, a liquid crystal display includes the polarizing plate. A method of fabricating a polarizing plate includes preparing a multilayer film containing about 0.1 wt % to about 5 wt % of a UV absorbent, stretching the multilayer film to about 2 to about 10 times its initial length in a transverse direction (TD) to prepare a polyester film, and attaching the polyester film to at least one surface of a polarizer. The multilayer film comprises a polyester base film and a primer layer on at least one surface of the polyester base film.
Abstract:
A polarizing plate and an optical display apparatus including the same are provided. A polarizing plate includes a polarizer; and a first retardation layer and a second retardation layer sequentially stacked on a lower surface of the polarizer, and the first retardation layer has an in-plane retardation of about 180 nm to about 220 nm at a wavelength of about 550 nm; and the second retardation layer has an in-plane retardation of about 80 nm to about 100 nm at a wavelength of about 550 nm.