Abstract:
An object is to provide a semiconductor device that can maintain the connection relation between logic circuit units or the circuit configuration of each of the logic circuit units even after supply of power supply voltage is stopped. Another object is to provide a semiconductor device in which the connection relation between logic circuit units or the circuit configuration of each of the logic circuit units can be changed at high speed. In a reconfigurable circuit, an oxide semiconductor is used for a semiconductor element that stores data on the circuit configuration, connection relation, or the like. Specifically, the oxide semiconductor is used for a channel formation region of the semiconductor element.
Abstract:
A transistor having favorable electrical characteristics. A transistor suitable for miniaturization. A transistor having a high switching speed. One embodiment of the present invention is a semiconductor device that includes a transistor. The transistor includes an oxide semiconductor, a gate electrode, and a gate insulator. The oxide semiconductor includes a first region in which the oxide semiconductor and the gate electrode overlap with each other with the gate insulator positioned therebetween. The transistor has a threshold voltage higher than 0 V and a switching speed lower than 100 nanoseconds.
Abstract:
A semiconductor device capable of stably holding data for a long time is provided. A transistor including a back gate is used as a writing transistor of a memory element. In the case where the transistor is an n-channel transistor, a negative potential is supplied to a back gate in holding memory. The supply of the negative potential is stopped while the negative potential is held in the back gate. In the case where an increase in the potential of the back gate is detected, the negative potential is supplied to the back gate.
Abstract:
It is an object to provide a memory device whose power consumption can be suppressed and a semiconductor device including the memory device. As a switching element for holding electric charge accumulated in a transistor which functions as a memory element, a transistor including an oxide semiconductor film as an active layer is provided for each memory cell in the memory device. The transistor which is used as a memory element has a first gate electrode, a second gate electrode, a semiconductor film located between the first gate electrode and the second gate electrode, a first insulating film located between the first gate electrode and the semiconductor film, a second insulating film located between the second gate electrode and the semiconductor film, and a source electrode and a drain electrode in contact with the semiconductor film.
Abstract:
Provided is a semiconductor device which has low power consumption and can operate at high speed. The semiconductor device includes a memory element including a first transistor including crystalline silicon in a channel formation region, a capacitor for storing data of the memory element, and a second transistor which is a switching element for controlling supply, storage, and release of charge in the capacitor. The second transistor is provided over an insulating film covering the first transistor. The first and second transistors have a source electrode or a drain electrode in common.
Abstract:
A semiconductor device with a transistor having favorable electrical characteristics is provided. The semiconductor device has a memory circuit and a circuit that are over the same substrate. The memory circuit includes a capacitor, a first transistor, and a second transistor. A gate of the first transistor is electrically connected to the capacitor and one of a source and a drain of the second transistor. The circuit includes a third transistor and a fourth transistor that are electrically connected to each other in series. The first transistor and the third transistor each include an active layer including silicon, and the second transistor and the fourth transistor each include an active layer including an oxide semiconductor.
Abstract:
A bootstrap circuit of which the capacitance of a bootstrap capacitor is small and which requires a shorter precharge period is provided. The bootstrap circuit includes transistors M41 and M42, capacitors BSC1 and BSC2, an inverter INV41, and keeper circuits 43 and 44. A signal OSG with a high voltage is generated from an input signal OSG_IN. As the signal OSG_IN is made a high level, a node SWG is made a high level by BSC1. After a signal BSE1 is made a high level and the node SWG is made a low level by the keeper circuit 44, a signal BSE2 is made a high level. By the capacitance coupling of BSC2, a voltage of an output terminal 22 increases.
Abstract:
The data in a volatile memory may conventionally be lost even in case of a very short time power down or supply voltage drop such as an outage or sag. In view of the foregoing, an object is to extend data retention time even with a volatile memory for high-speed data processing. Data retention time can be extended by backing up the data content stored in the volatile memory in a memory including a capacitor and an oxide semiconductor transistor.
Abstract:
It is an object to provide a memory device whose power consumption can be suppressed and a semiconductor device including the memory device. As a switching element for holding electric charge accumulated in a transistor which functions as a memory element, a transistor including an oxide semiconductor film as an active layer is provided for each memory cell in the memory device. The transistor which is used as a memory element has a first gate electrode, a second gate electrode, a semiconductor film located between the first gate electrode and the second gate electrode, a first insulating film located between the first gate electrode and the semiconductor film, a second insulating film located between the second gate electrode and the semiconductor film, and a source electrode and a drain electrode in contact with the semiconductor film.
Abstract:
Provided is a semiconductor device which has low power consumption and can operate at high speed. The semiconductor device includes a memory element including a first transistor including crystalline silicon in a channel formation region, a capacitor for storing data of the memory element, and a second transistor which is a switching element for controlling supply, storage, and release of charge in the capacitor. The second transistor is provided over an insulating film covering the first transistor. The first and second transistors have a source electrode or a drain electrode in common.