Abstract:
The liquid crystal display device includes a first substrate, a second substrate, and a liquid crystal layer between the first substrate and the second substrate. The first substrate includes a transistor including an oxide semiconductor film including a channel formation region; a pixel electrode electrically connected to the transistor; an insulating layer in contact with the pixel electrode; and a first common electrode in contact with the insulating layer. The second substrate faces the first substrate and includes a second common electrode. A negative liquid crystal material is used for the liquid crystal layer. The specific resistivity of the liquid crystal material is greater than or equal to 1.0×1013 Ω·cm and less than or equal to 1.0×1016 Ω·cm.
Abstract:
An object is to improve productivity related to a laser light irradiation step in a bonding technique of substrates using glass frit. A highly airtight sealing structure or a highly airtight light-emitting device, which can be manufactured with high productivity, is provided. When a glass layer by melting glass frit or a sintered body by sintering glass frit is irradiated with laser light, in order to increase the efficiency, a light-absorbing material is attached to a surface of the glass layer. The laser light irradiation is performed on the light-absorbing material and the glass layer. The substrates are fixed with the glass layer therebetween.
Abstract:
A semiconductor device using unipolar transistors, in which high and low levels are expressed using high and low power supply potentials, is provided. The semiconductor device includes four transistors, two capacitors, two wirings, two input terminals, and an output terminal. A source or a drain of the first transistor and a source or a drain of the fourth transistor are electrically connected to the first wiring. A gate of the fourth transistor is electrically connected to the first input terminal, and a gate of the second transistor is electrically connected to the second input terminal. A source or a drain of the second transistor and a source or a drain of the third transistor are electrically connected to the second wiring. The first transistor, the second transistor, and the two capacitors are electrically connected to the output terminal.
Abstract:
Provided is a display system with which visibility can be improved. The display system includes an imaging device, a control device, and a display device. The imaging device includes first pixels arranged in a matrix, and the display device includes second pixels arranged in a matrix. The imaging device has a function of generating first image data on the basis of the illuminance of light emitted to the first pixels. The control device has a function of forming a histogram on the basis of the first image data and dividing the histogram into two or more illuminance ranges. The control device has a function of converting the gray levels which are included in the first image data as information and correspond to the illuminance of the light emitted to the first pixels, thereby generating second image data obtained by performing dynamic range compression on the first image data. The compressibility for the dynamic range compression is calculated for each illuminance range by the control device on the basis of the value of integral in each illuminance range of the histogram.
Abstract:
A semiconductor device is provided; the semiconductor device includes unipolar transistors. A steady-state current does not flow in the semiconductor device. The semiconductor device uses a high-level potential and a low-level potential to express a high level and a low level, respectively. The semiconductor device includes unipolar transistors, a capacitor, first and second input terminals, and an output terminal. To the second input terminal, a signal is input whose logic is inverted from the logic of a signal input to the first input terminal. The semiconductor device has a circuit structure called bootstrap in which two unipolar transistors are connected in series between the high-level potential and the low-level potential and a capacitor is provided between an output terminal and a gate of one of the two transistors. A delay is caused between the gate of the transistor and the signal output from the output terminal, whereby the bootstrap can be certainly performed.
Abstract:
To provide a display device with high display quality, an eye-friendly display device, a display device with low power consumption, a display device with a reduced change in voltage written to a pixel, or a novel display device. In the display device, a first image signal in which one of grayscale levels of a first pixel and an adjacent second pixel is near white and the other is near black is written. The first image signal is compared with a second image signal. When the grayscale levels of the second image signal written to the first pixel and the second pixel are halftone, the second image signal is written an odd number of times greater than or equal to three times. When the grayscale levels of the second image signal written to the first pixel and the second pixel are near white or near black, the second image signal is written once. The interval between the writing of the first image signal and the writing of the second image signal is longer than or equal to 1 second and shorter than or equal to 10,000 hours.
Abstract:
A flicker of an FFS liquid crystal display device that is driven at a low refresh rate is reduced. In an FFS liquid crystal display, a pixel electrode and a first common electrode included in a liquid crystal element are formed on an element substrate side, and a second common electrode is formed on another substrate (counter substrate) side. By making the first and second common electrodes have the same potential, generation of a residual DC voltage can be suppressed in a pixel. Thus, even when a refresh rate is lowered, change in transmittance of a pixel can be suppressed in a data retention period, so that a flicker can be reduced.
Abstract:
To provide an information processing system allowing eye-friendly display. The information processing system includes a liquid crystal display device (LCD) as a display unit. An image can be displayed in the LCD by at least two driving methods: a first driving method in which data is sequentially rewritten every frame; and a second driving method in which rewriting of data is stopped after data is rewritten once or more times at the same refresh rate as the first driving method. After the display by the second driving method, each pixel is inversely driven plural times by a signal with an amplitude greater than or equal to 80% and less than or equal to 100% of the maximum amplitude of the data signal, whereby degradation of a liquid crystal material is repaired.
Abstract:
A flicker of an FFS liquid crystal display device that is driven at a low refresh rate is reduced. In an FFS liquid crystal display, a pixel electrode and a first common electrode included in a liquid crystal element are formed on an element substrate side, and a second common electrode is formed on another substrate (counter substrate) side. By making the first and second common electrodes have the same potential, generation of a residual DC voltage can be suppressed in a pixel. Thus, even when a refresh rate is lowered, change in transmittance of a pixel can be suppressed in a data retention period, so that a flicker can be reduced.
Abstract:
The object can be achieved by the following structure. A material whose value of fracture toughness is greater than or equal to 1.5 [MPa·m1/2] is used for a base substrate and a counter substrate which hold a liquid crystal material therebetween; a first sealant containing liquid crystal contaminants at less than or equal to 1×10−4 wt % is provided so as be in contact with the liquid crystal material and to surround the liquid crystal material seamlessly; the second sealant is provided to surround the first sealant; and the base substrate and the counter substrate which hold the liquid crystal material therebetween using the first sealant and the second sealant are bonded with a bond strength of greater than or equal to 1 [N/mm2].