摘要:
An N-MOS and/or P-MOS device having enhanced performance such as an FET suitable for use in a CMOS circuit. The device comprises both an “L-like” shaped layer or spacer on the side walls of a gate structure as well as a CESL (contact-etch stop layer) that covers the gate structure and surrounding substrate to induce increase tensile stresses in the N-MOS device and increased compressive stresses in the P-MOS device.
摘要:
An N-MOS and/or P-MOS device having enhanced performance such as an FET suitable for use in a CMOS circuit. The device comprises both an “L-like” shaped layer or spacer on the side walls of a gate structure as well as a CESL (contact-etch stop layer) that covers the gate structure and surrounding substrate to induce increase tensile stresses in the N-MOS device and increased compressive stresses in the P-MOS device.
摘要:
A process and apparatus for a high gate dielectric MOS transistor is described. A substrate is provided, a high-k gate dielectric material is deposited over the substrate, a gate electrode layer is deposited over the dielectric material and a patterning step is performed creating sidewalls of the electrode and dielectric and removing a portion of the substrate. Sidewall material is deposited over the patterned gate electrode and dielectric creating protective sidewalls on the patterned gate electrode and dielectric that extends beneath the bottom of the dielectric. In alternative embodiments a channel material is deposited beneath the high-k gate dielectric and the patterning step removes at least a portion of the channel material beneath the high-k gate dielectric. In alternative embodiments the channel material is counter-doped.
摘要:
A process and apparatus for a high gate dielectric MOS transistor is described. A substrate is provided, a high-k gate dielectric material is deposited over the substrate, a gate electrode layer is deposited over the dielectric material and a patterning step is performed creating sidewalls of the electrode and dielectric and removing a portion of the substrate. Sidewall material is deposited over the patterned gate electrode and dielectric creating protective sidewalls on the patterned gate electrode and dielectric that extends beneath the bottom of the dielectric. In alternative embodiments a channel material is deposited beneath the high-k gate dielectric and the patterning step removes at least a portion of the channel material beneath the high-k gate dielectric. In alternative embodiments the channel material is counter-doped.
摘要:
An integrated circuit includes a substrate, a first transistor, and a second transistor. The first transistor has a first gate dielectric portion located between a first gate electrode and the substrate. The first gate dielectric portion includes a first high-permittivity dielectric material and/or a second high-permittivity dielectric material. The first gate dielectric portion has a first equivalent silicon oxide thickness. The second transistor has a second gate dielectric portion located between a second gate electrode and the substrate. The second gate dielectric portion includes the first high-permittivity dielectric material and/or the second high-permittivity dielectric material. The second gate dielectric portion has a second equivalent silicon oxide thickness. The second equivalent silicon oxide thickness may be different than the first equivalent silicon oxide thickness.
摘要:
A MOSFET includes a gate having a high-k gate dielectric on a substrate and a gate electrode on the gate dielectric. The gate dielectric protrudes beyond the gate electrode. A deep source and drain having shallow extensions are formed on either side of the gate. The deep source and drain are formed by selective in-situ doped epitaxy or by ion implantation and the extensions are formed by selective, in-situ doped epitaxy. The extensions lie beneath the gate in contact with the gate dielectric. The material of the gate dielectric and the amount of its protrusion beyond the gate electrode are selected so that epitaxial procedures and related procedures do not cause bridging between the gate electrode and the source/drain extensions. Methods of fabricating the MOSFET are described.
摘要:
A semiconductor device includes a gate, which comprises a gate electrode and a gate dielectric underlying the gate electrode, a spacer formed on a sidewall of the gate electrode and the gate dielectric, a buffer layer having a first portion underlying the gate dielectric and the spacer and a second portion adjacent the spacer wherein the top surface of the second portion of the buffer layer is recessed below the top surface of the first portion of the buffer layer, and a source/drain region substantially aligned with the spacer. The buffer layer preferably has a greater lattice constant than an underlying semiconductor substrate. The semiconductor device may further include a semiconductor-capping layer between the buffer layer and the gate dielectric, wherein the semiconductor-capping layer has a smaller lattice constant then the buffer layer.
摘要:
A system and method for suppressing sub-oxide formation during the manufacturing of semiconductor devices (such as MOSFET transistor) with high-k gate dielectric is disclosed. In one example, the MOSFET transistor includes a gate structure including a high-k gate dielectric and a gate electrode. In this example, the gate structure is covered with a nitride layer that is used to prevent oxygen from entering the structure during processing, yet is sufficiently thin to be effectively transparent to the processing.
摘要:
A semiconductor device includes a PMOS transistor formed on a substrate structure. The PMOS transistor includes a source and a drain each including a diffusion region in the substrate structure, a channel region defined between the source and the drain, a gate dielectric over the channel region, and a gate electrode over the gate dielectric. The gate electrode is formed of a material having an n-type work function with respect to the semiconductor substrate and is treated such that a work function of the gate electrode is converted into a mid-gap type or p-type work function with respect to the semiconductor substrate.
摘要:
A semiconductor device and process including a high-k gate dielectric is described. A substrate is provided, and a high-k gate dielectric material, preferably amorphous HfSiON, is deposited over the substrate. In preferred embodiments, the high-k dielectric material includes nitrogen. In a preferred embodiment, a silicon nitride layer is deposited using jet vapor deposition (JVD) on the high-k dielectric material. When the JVD nitride layer is deposited according to preferred embodiments, the layer has a low density of charge traps, it maintains comparable carrier mobility and provides better EOT compared to oxide or oxynitride. A second nitrogen-containing layer formed between the high-k dielectric and the gate electrode acts as a diffusion barrier. It also reduces problems relating to oxygen vacancy formation in high-k dielectric and therefore minimizes Fermi-level pinning.