Abstract:
A liquid crystal display consists of a first transparent substrate, a first transparent conductive layer, a liquid crystal layer, a second transparent conductive layer, and a second transparent substrate. A color filter can be disposed under the first transparent substrate, over the second transparent substrate or under the second transparent substrate. The color filter is made by a glass substrate printed by a printing method. Furthermore, when the first transparent substrate and the second transparent substrate are glass substrate, the color filter can be printed directly on top side of the first transparent substrate, bottom side of the first transparent substrate, top side of the second transparent substrate or bottom side of the second transparent substrate.
Abstract:
An organic light emitting display (OLED) with a color filter consists of a transparent substrate, a first electrode, an organic light emitting layer, and a second electrode. A color filter is printed on top or bottom side of the transparent substrate by a printing method. Furthermore, the color filter can also be made by a substrate such as plastic substrate or glass substrate being printed by a printing method.
Abstract:
A resonator includes a resonating body and at least one periodic structure having one end connected to the resonating body. The periodic structure includes at least two basic structure units with duplicated configuration. The periodic structure blocks wave propagation caused by the vibration of the resonating body. The resonating body has a resonance frequency f0. The periodic structure has a band gap characteristic or a deaf band characteristic within a particular frequency range, and the resonance frequency f0 falls within the particular frequency range of the periodic structure.
Abstract:
The present disclosure provides a swinging device having a swinging mechanism disposed on an energy provider, wherein volume and shape of the swinging mechanism and a distance between the swinging mechanism and the energy provider are adjusted so as to control the ratio of the distance and a characteristic value corresponding to the swinging mechanism in a specific range such that the swinging mechanism is capable of resonating with respect to the rotation of the energy provider. The swinging mechanism is capable of detecting the rotating frequency of the energy provider as well as combining with a display unit which is capable of displaying information with respect to the rotating status or displaying image patterns controlled according to the rotating status.
Abstract:
A light collection system including a light concentrating device and a reflective curving-surface device is provided. The light concentrating device receives at least a portion of an incident light and forwardly emits the portion of the incident light after concentrating and passing it through a first focal region, so as to obtain a first-stage output light. The reflective curving-surface device has an entrance aperture for receiving the first-stage output light. The reflective curving-surface device includes a reflective inner curving surface, and at least a portion of the reflective inner curving surface has a second focal region. The first focal region and the second focal region are confocal or approximately confocal within a range. As a result, at least a portion of the first-stage output light is confocally converted into a forwardly emitted second-stage output light.
Abstract:
A bi-display mode liquid crystal display comprises a top and a bottom transparent substrate that are arranged in a parallel way, and between the two transparent substrates are a liquid crystal layer, a semi-reflector and a color filter sequentially, in addition, a top and a bottom polarizer are set on the outer surface of the top and the bottom transparent substrate respectively; by setting the semi-reflector upon the color filter, it makes the light not pass through the color filter and increase the reflection rate. Therefore, the present invention not only provides a reflective mode of high brightness gray scale display, but has a transmissive mode of beautiful color, and has the advantage of power saving and easy to use.
Abstract:
An ultrasonic transducer detector having a high operating frequency is provided. The ultrasonic transducer detector comprises a substrate and an ultrasonic transducer array. The substrate has a plurality of openings, and the ultrasonic transducer array is disposed on the substrate. The ultrasonic transducer array has a plurality of resonance units, and the thickness of each resonance unit is equivalent to ½ wavelength of the operating frequency of the ultrasonic transducer. Each resonance unit comprises an oscillating element and a piezoelectric element. The oscillating element has a first surface adjacent to the substrate, and the piezoelectric element is disposed on the first surface and located in the corresponding opening.
Abstract:
A microelectromechanical filter is provided. The microelectromechanical filter includes an input electrode, an output electrode, one or several piezoelectric resonators, one or several high quality factor resonators, and one or several coupling beams. The input electrode and the output electrode are disposed on the piezoelectric resonators. The high quality factor resonator is silicon or of piezoelectric materials, and there is no metal electrode on top of the resonator. The coupling beam is connected between the piezoelectric resonator and the high quality factor resonator. The coupling beam transmits an acoustic wave among the resonators, and controls a bandwidth of filter. The microelectromechanical filter with low impedance and high quality factor fits the demand for next-generation communication systems.
Abstract:
An inter-digital bulk acoustic resonator including a resonating structure, one or more input electrodes, one or more output electrodes, a substrate, and a supporting structure disposed on the substrate is provided. The resonating structure includes one or more resonating beams and a coupling beam. The resonating beams are connected at opposite two sides of the coupling beam respectively. The input electrodes and the output electrodes are arranged among the resonating beams in interlace. The input electrodes, the output electrodes, and the resonating beams are parallel to each other. Two ends of the coupling beam are connected to the supporting structure, such that the resonating structure is supported on the substrate.
Abstract:
An optical multi-ring scanner is disclosed, which comprises: a substrate; an outer ring driving element, disposed inside the substrate and configured symmetrically at two sides thereof with a pair of first arms that are connected respectively to the substrate; at least one inner ring driving element, each configured with a first inner ring driver in a manner that the first inner ring driver has a pair of second arms symmetrically disposed at a top side and a bottom side thereof while being connected to the outer ring driving element; and a mirror element, disposed inside the first inner ring driver and having a pair of third arms symmetrically disposed at a top side of a bottom side thereof; wherein, the third arm is disposed coaxial with the second arm while enabling the first arm to be disposed perpendicular to the second arm and the third arm.