摘要:
A process for producing modified thermoplastic resin by subjecting a thermoplastic resin to a modifying reaction in a molten state, comprising performing the modifying reaction using carbon dioxide as the reaction medium, wherein carbon dioxide is used in a proportion of 2-200 parts by weight per 100 parts by weight of the thermoplastic resin, whereby the efficiency and the uniformity of the reaction can be increased to a high extent while attaining considerable decrease in the remaining amount of the unreacted components in the resulting modified thermoplastic resin without having recourse to the use of an organic reaction solvent, so that the production can be realized easily at a low cost in an efficient manner.
摘要:
This invention provides a method for stably adding a predetermined amount of supercritical carbon dioxide at a fixed delivery rate into a forming machine and also a process for producing an expanded thermoplastic resin product by making use of the addition method. Carbon dioxide is charged from a liquefied carbon dioxide cylinder (1) into a predetermined amount deliverable pump (2) while allowing the carbon dioxide to remain in a liquefied state. When the carbon dioxide is pressurized and delivered by the predetermined amount deliverable pump (2), a delivery pressure of the carbon dioxide is controlled at an optional pressure within a range of from a critical pressure (7.4 MPa) of carbon dioxide to 40 MPa to deliver the carbon dioxide without any fluctuation of the amount of the delivery by setting up the pressure of a pressure control valve (3). The carbon dioxide is heated to a critical temperature (31° C.) of carbon dioxide or higher to convert it into supercritical carbon dioxide. This supercritical carbon dioxide is then added to a molten thermoplastic resin in the forming machine (4).
摘要:
A process is provided for the production of expanded olefinic thermoplastic elastomer product having good external appearance, flexibility and heat resistance. This process features using, as raw materials, a particular olefinic thermoplastic elastomer and carbon dioxide as a blowing agent.
摘要:
Disclosed is a process for the production of an injection-expansion molded, thermoplastic resin product. The process comprises a gas dissolving step, a cooling step, a metering and injection step, and an expansion controlling step. Specifically, a thermoplastic resin is molten in a continuous plasticator (1), supercritical carbon dioxide and/or nitrogen is added as a blowing agent, and the blowing agent and the thermoplastic resin are formed into a mutually-dissolved state. The resultant molten resin composition is cooled within the plasticator while maintaining a pressure equal to or higher than a critical pressure of the blowing agent. The thus-cooled molten resin composition is metered by an injector (7) and is filled in a mold (8). An internal pressure of the mold is lowered beyond the critical pressure of the blowing agent to produce cell nuclei, whereby the cell diameter is controlled. The blowing agent is maintained in a supercritical state up to the metering and injection step.
摘要:
A process for preparing an expanded product of a thermoplastic resin which includes a gas dissolving step of adding supercritical carbon dioxide and/or nitrogen as an blowing agent to a thermoplastic resin, and melting it in the thermoplastic resin, a cooling step of cooling the resulting molten resin composition under a pressure not less than a critical pressure of the blowing agent, a nuclei forming step of discharging the molten resin composition from a die to lower the pressure to a level not more than the critical pressure, and an expansion controlling step of cooling an expanded product of the thermoplastic resin to a level not more than a glass transition temperature or a crystallization temperature of the resin to control a cell diameter of the expanded product.
摘要:
Provided are a shape-retaining film which has excellent adhesion to inks and other functional layers while retaining high shape-retaining properties and a process for producing the shape-retaining film. The shape-retaining film comprises an ethylene homopolymer or an ethylene/a-olefin copolymer having a C3-6 a-olefin content less than 2 wt. %, the ethylene homopolymer or copolymer having a density of 950 kg/m3 or higher and a weight-average molecular weight (Mw)/number-average molecular weight (Mn) ratio of 5-20. The film has a tensile elasticity modulus of 6-50 GPa and has either an angle of recovery from 90 bending of 8 or less or an angle of recovery from 180 bending of 65 or less.
摘要翻译:提供一种形状保持膜,其具有优异的油墨和其它功能层的粘附性,同时保持高的形状保持性能和形成保持膜的方法。 形状保持膜包括乙烯均聚物或C 3-6烯烃含量小于2重量%的乙烯/α-烯烃共聚物。 %,密度为950kg / m 3以上的乙烯均聚物或共聚物,重均分子量(Mw)/数均分子量(Mn)比为5-20。 该膜具有6-50GPa的拉伸弹性模量,并且具有从90°弯曲恢复的角度为8°或更小,或者180°弯曲的恢复角为65°或更小。
摘要:
A device for preventing backfire of inflammable gases comprising a cylinder, a balance spring, and a repelling magnet case. The cylinder holds both a valve casing whose rear edge shuts a gas induction passage when the casing is pushed backward by high pressure, and a check valve which contains a repelling magnet and which shuts and opens a gas supplying passage and a flow-way formed in the valve casing. The repelling magnet case, which is pushed backward by the balance spring, contains a repelling magnet aligned face-to-face with a magnet that is contained in the check valve.
摘要:
The expanded product of the present invention is an expanded product having a density of from 0.02 to 0.7 g/cm3, which is obtained by expanding ultra-high-molecular-weight polyethylene having a viscosity average molecular weight of from 300,000 to 10,000,000. This expanded product can be prepared by adding carbon dioxide to ultra-high-molecular-weight polyethylene in the molten state in an extruder, and expanding the resin by extrusion such that each of the surface temperature and the central part temperature of the resin immediately after discharge from the die may be a predetermined temperature, while at the same time setting the residence time and pressure of the resin at the die section to specific values. Based on these, the invention provides an expanded product with good external appearance, having a skin layer to which the functions such as light weight, insulating property, sound absorption, low dielectric constant, impact absorption, flexibility and the like can be imparted without significantly deteriorating the excellent features of abrasion resistance, self-lubrication, impact strength, cryogenic properties and chemical resistance that are inherent to ultra-high-molecular-weight polyethylene; and a process for preparation of the expanded product stably.
摘要翻译:本发明的发泡产品是通过使具有粘均分子量的超高分子量聚乙烯发泡而获得的密度为0.02-0.7g / cm 3的发泡产品 从30万到10,000,000。 该膨胀产物可以通过在挤出机中以熔融状态向超高分子量聚乙烯中加入二氧化碳,并通过挤出使树脂膨胀,使得树脂的表面温度和中心部分温度立即在 从模具排出可以是预定温度,同时将树脂在模具部分的停留时间和压力设定为具体值。 基于这些,本发明提供了具有良好外观的膨胀产品,其具有皮肤层,能够赋予诸如重量轻,绝缘性能,吸声性,低介电常数,冲击吸收性,柔软性等功能的表皮层 劣化超高分子量聚乙烯固有的耐磨性,自润滑性,冲击强度,低温性能和耐化学性的优异特征; 以及稳定地制备膨胀产品的方法。
摘要:
The invention provides a polymeric piezoelectric material including a helical chiral polymer having a weight-average molecular weight of from 50,000 to 1,000,000 and having optical activity, wherein a crystallinity of the material measured by a DSC method is from 20% to 80%, and a product of a standardized molecular orientation MORc measured by a microwave transmission type molecular orientation meter based on a reference thickness of 50 μm and the crystallinity is from 25 to 250.
摘要:
The method of the present invention for producing a urethane-based thermoplastic elastomer composition foam comprises the steps of: adding and mixing 0.1 to 30 parts by weight of carbon dioxide (B) to 100 parts by weight of a urethane-based thermoplastic elastomer composition (A) in a molten state, wherein said urethane-based thermoplastic elastomer composition (A) comprises a urethane-based thermoplastic elastomer (A-1) and other thermoplastic elastomer (A-2) in an (A-1)/(A-2) ratio of 20/80 to 99/1 by weight, to form a molten urethane-based thermoplastic elastomer composition (C) which is in a state of a mixture of the urethane-based thermoplastic elastomer composition (A) and the carbon dioxide (B) (gas dissolving step); and lowering a temperature of said molten urethane-based thermoplastic elastomer composition (C) (cooling step). The present invention can produce the urethane-based thermoplastic elastomer foam of stable quality over a range from low foamed product to highly foamed product by adding a given quantity of carbon dioxide in the molten urethane-based thermoplastic elastomer quantitatively and stably. It can also produce the foam excellent in flexibility, thermal insulation and surface appearances. It is also excellent in safety, because of use of carbon dioxide in place of the common foaming agent of fluorochlorohydrocarbon or butane, thus causing no air pollution or destruction of the ozone layer.