摘要:
An oxide film having, for example, a spinel structure is deposited on a substrate, and ions of an inert gas such as He, Ar, Ne, Kr, or Xe, oxygen gas ions, or metal ion of a film constituting element are radiated onto the film during deposition, thereby to obtain an oxide thin film in which a specific crystal direction is oriented.
摘要:
Disclosed is an artificial multilayer in which ferromagnetic layers and nonmagnetic layers are alternatively laminated, wherein a uniaxial magnetic anisotropy is introduced into the ferromagnetic layers in a predetermined direction, thereby controlling the gradient of the relative change of resistivity to the change of external magnetic field. The uniaxial magnetic anisotropy is introduced into the ferromagnetic layers by applying a magnetic field along the surface of ferromagnetic layers during the formation thereof.
摘要:
Disclosed is an artificial multilayer in which ferromagnetic layers and nonmagnetic layers are alternatively laminated, wherein a uniaxial magnetic anisotropy is introduced into the ferromagnetic layers in a predetermined direction, thereby controlling the gradient of the relative change of resistivity to the change of external magnetic field. The uniaxial magnetic anisotropy is introduced into the ferromagnetic layers by applying a magnetic field along the surface of ferromagnetic layers during the formation thereof.
摘要:
A magnetoresistance effect element comprises the multilayer formed by alternately stacking magnetic and nonmagnetic layers. The magnetic layers containing three magnetic elements of Fe, Co and Ni. Any two magnetic layers adjacent to each other with one of the nonmagnetic layer interposed therebetween are antiferromagnetically coupled under a condition where a magnetic field is not substantially applied thereto.
摘要:
A magnetoresistance effect element comprises the multilayer formed by alternately stacking magnetic and nonmagnetic layers. The magnetic layers containing at least two magnetic elements selected from a group of magnetic elements consisting of Fe, Co and Ni. Any two magnetic layers adjacent to each other with one of the nonmagnetic layer interposed therebetween are antiferro-magnetically coupled under a condition where a magnetic field is not substantially applied thereto.
摘要:
A magnetoresistance effect element comprises the multilayer formed by alternately stacking magnetic and nonmagnetic layers. The magnetic layers containing at least two magnetic elements selected from a group of magnetic elements consisting of Fe, Co and Ni. Any two magnetic layers adjacent to each other with one of the nonmagnetic layer interposed therebetween are antiferromagnetically coupled under a condition where a magnetic field is not substantially applied thereto.
摘要:
A magnetoresistance effect element includes a multilayer stack of alternating magnetic and nonmagnetic layers, and having a mixture layer constituted by a mixture of a ferromagnetic element and a non-ferromagnetic element interposed between adjacent stacked magnetic and non-magnetic layers so as to exhibit a magnetoresistance effect. The multilayered stack includes at least two magnetic layers, at least two mixture layers, and at least one non-magnetic layer. 2(X.sub.1 /X.sub.n)/n is larger than 1.1 where n is the number of atomic layers of the mixture layer, X.sub.1 is an atomic concentration (%) of the ferromagnetic element of an atomic layer closest to the magnetic layer, and X.sub.n is an atomic concentration (%) of the ferromagnetic element of the n-th atomic layer closest to the non-magnetic layer.
摘要:
A magnetoresistance effect element comprises a magnetic body obtained by dispersing magnetic metal particles containing at least one magnetic element selected from the group consisting of Fe, Co, and Ni in a semiconductor matrix.
摘要:
There is disclosed a magnetoresistance effect element including a multilayer constituted by a magnetic layers in which fine magnetic metal particles of crystalline or amorphous containing at least one element of Fe, Co, and Ni are dispersed in a matrix containing at least one element selected from the group consisting of noble metals and Cu, and non-magnetic layers containing a noble metal.
摘要:
A magnetoresistance effect element includes a multilayer in which magnetic layers, mixture layers each constituted by a mixture of a ferromagnetic element and a non-ferromagnetic element, and nonmagnetic layers are stacked on each other so as to exhibit a magnetoresistance effect. In this element, each of the mixture layers is interposed between the magnetic layer and the nonmagnetic layer, and 2 (X.sub.1 /X.sub.n)/n is larger than 1.1 where n is the number of atomic layers of the mixture layer, X.sub.1 is the atomic concentration (%) of the ferromagnetic element of an atomic layer closest to the magnetic layer, and X.sub.n is the atomic concentration (%) of the ferromagnetic element of an n-th atomic layer closest to the nonmagnetic layer.