摘要:
Disclosed is an artificial multilayer in which ferromagnetic layers and nonmagnetic layers are alternatively laminated, wherein a uniaxial magnetic anisotropy is introduced into the ferromagnetic layers in a predetermined direction, thereby controlling the gradient of the relative change of resistivity to the change of external magnetic field. The uniaxial magnetic anisotropy is introduced into the ferromagnetic layers by applying a magnetic field along the surface of ferromagnetic layers during the formation thereof.
摘要:
Disclosed is an artificial multilayer in which ferromagnetic layers and nonmagnetic layers are alternatively laminated, wherein a uniaxial magnetic anisotropy is introduced into the ferromagnetic layers in a predetermined direction, thereby controlling the gradient of the relative change of resistivity to the change of external magnetic field. The uniaxial magnetic anisotropy is introduced into the ferromagnetic layers by applying a magnetic field along the surface of ferromagnetic layers during the formation thereof.
摘要:
A magnetoresistance effect element comprises a magnetic body obtained by dispersing magnetic metal particles containing at least one magnetic element selected from the group consisting of Fe, Co, and Ni in a semiconductor matrix.
摘要:
There is disclosed a magnetoresistance effect element including a multilayer constituted by a magnetic layers in which fine magnetic metal particles of crystalline or amorphous containing at least one element of Fe, Co, and Ni are dispersed in a matrix containing at least one element selected from the group consisting of noble metals and Cu, and non-magnetic layers containing a noble metal.
摘要:
An oxide film having, for example, a spinel structure is deposited on a substrate, and ions of an inert gas such as He, Ar, Ne, Kr, or Xe, oxygen gas ions, or metal ion of a film constituting element are radiated onto the film during deposition, thereby to obtain an oxide thin film in which a specific crystal direction is oriented.
摘要:
A magnetic device, comprises a first magnetic layer; a second magnetic layer on the magnetic layer and having a coercive force smaller than that of the first magnetic layer; a semiconductor layer between the first and second magnetic layers so that photo-induced magnetism occurs between the first and second magnetic layers when the semiconductor layer is irradiated with light, a third magnetic layer on the second magnetic layer, the third magnetic layer having a coercive force larger than the coercive force of the second magnetic layer, and a second semiconductor layer between the second and third magnetic layers, magnetism being induced between the second and third magnetic layers when the second semiconductor layer is irradiated with light.
摘要:
A magnetic element comprises a granular magnetic film which has ferromagnetic fine particles dispersed in a dielectric matrix and does not display superparamagnetism and further possesses a finite coercive force, and a ferromagnetic film. A granular magnetic film and a ferromagnetic film are stacked or arrayed along one surface of a substrate and constitutes a ferromagnetic tunnel junction film. In the ferromagnetic tunnel junction film, the granular magnetic film functions as a barrier. Of the granular magnetic film and the ferromagnetic film, by varying spin direction of one ferromagnetic film through an external magnetic field, a giant magnetoresistance effect is manifested. Such a magnetic element is characterized in that magnetoresistance change rate is large, saturation magnetic field is small, resistance of the element can be controlled to an appropriate value, performance is small in its variation and stable.
摘要:
A magnetoresistance effect element comprises the multilayer formed by alternately stacking magnetic and nonmagnetic layers. The magnetic layers containing three magnetic elements of Fe, Co and Ni. Any two magnetic layers adjacent to each other with one of the nonmagnetic layer interposed therebetween are antiferromagnetically coupled under a condition where a magnetic field is not substantially applied thereto.
摘要:
A magnetoresistance effect element comprises the multilayer formed by alternately stacking magnetic and nonmagnetic layers. The magnetic layers containing at least two magnetic elements selected from a group of magnetic elements consisting of Fe, Co and Ni. Any two magnetic layers adjacent to each other with one of the nonmagnetic layer interposed therebetween are antiferro-magnetically coupled under a condition where a magnetic field is not substantially applied thereto.
摘要:
A magnetoresistance effect element comprises the multilayer formed by alternately stacking magnetic and nonmagnetic layers. The magnetic layers containing at least two magnetic elements selected from a group of magnetic elements consisting of Fe, Co and Ni. Any two magnetic layers adjacent to each other with one of the nonmagnetic layer interposed therebetween are antiferromagnetically coupled under a condition where a magnetic field is not substantially applied thereto.