Abstract:
A hybrid integrated circuit device having high mount reliability comprises a module substrate which is a ceramic wiring substrate, a plurality of electronic component parts laid out on the main surface of the module substrate, a plurality of electrode terminals laid out on the rear surface of the module substrate, and a cap which is fixed to the module substrate to cover the main surface of the module substrate. The electrode terminals include a plurality of electrode terminals which are aligned along the edges of the module substrate and power voltage supply terminals which are located inner than these electrode terminals. The electrode terminals aligned along the substrate edges are coated, at least in their portions close to the substrate edge, with a protection film having a thickness of several tens micrometers or less. Connection reinforcing terminals consist of a plurality of divided terminals which are independent of each other, and are ground terminals.
Abstract:
A hybrid integrated circuit device having high mount reliability comprises a module substrate which is a ceramic wiring substrate, a plurality of electronic component parts laid out on the main surface of the module substrate, a plurality of electrode terminals laid out on the rear surface of the module substrate, and a cap which is fixed to the module substrate to cover the main surface of the module substrate. The electrode terminals include a plurality of electrode terminals which are aligned along the edges of the module substrate and power voltage supply terminals which are located inner than these electrode terminals. The electrode terminals aligned along the substrate edges are coated, at least in their portions close to the substrate edge, with a protection film having a thickness of several tens micrometers or less. Connection reinforcing terminals consist of a plurality of divided terminals which are independent of each other, and are ground terminals.
Abstract:
A hybrid integrated circuit device having high mount reliability comprises a module substrate which is a ceramic wiring substrate, a plurality of electronic component parts laid out on the main surface of the module substrate, a plurality of electrode terminals laid out on the rear surface of the module substrate, and a cap which is fixed to the module substrate to cover the main surface of the module substrate. The electrode terminals include a plurality of electrode terminals which are aligned along the edges of the module substrate and power voltage supply terminals which are located inner than these electrode terminals. The electrode terminals aligned along the substrate edges are coated, at least in their portions close to the substrate edge, with a protection film having a thickness of several tens micrometers or less. Connection reinforcing terminals consist of a plurality of divided terminals which are independent of each other, and are ground terminals.
Abstract:
A hybrid integrated circuit device having high mount reliability comprises a module substrate which is a ceramic wiring substrate, a plurality of electronic component parts laid out on the main surface of the module substrate, a plurality of electrode terminals laid out on the rear surface of the module substrate, and a cap which is fixed to the module substrate to cover the main surface of the module substrate. The electrode terminals include a plurality of electrode terminals which are aligned along the edges of the module substrate and power voltage supply terminals which are located inner than these electrode terminals. The electrode terminals aligned along the substrate edges are coated, at least in their portions close to the substrate edge, with a protection film having a thickness of several tens micrometers or less. Connection reinforcing terminals consist of a plurality of divided terminals which are independent of each other, and are ground terminals.
Abstract:
A hybrid integrated circuit device having high mount reliability comprises a module substrate which is a ceramic wiring substrate, a plurality of electronic component parts laid out on the main surface of the module substrate, a plurality of electrode terminals laid out on the rear surface of the module substrate, and a cap which is fixed to the module substrate to cover the main surface of the module substrate. The electrode terminals include a plurality of electrode terminals which are aligned along the edges of the module substrate and power voltage supply terminals which are located inner than these electrode terminals. The electrode terminals aligned along the substrate edges are coated, at least in their portions close to the substrate edge, with a protection film having a thickness of several tens micrometers or less. Connection reinforcing terminals consist of a plurality of divided terminals which are independent of each other, and are ground terminals.
Abstract:
A hybrid integrated circuit device having high mount reliability comprises a module substrate which is a ceramic wiring substrate, a plurality of electronic component parts laid out on the main surface of the module substrate, a plurality of electrode terminals laid out on the rear surface of the module substrate, and a cap which is fixed to the module substrate to cover the main surface of the module substrate. The electrode terminals include a plurality of electrode terminals which are aligned along the edges of the module substrate and power voltage supply terminals which are located inner than these electrode terminals. The electrode terminals aligned along the substrate edges are coated, at least in their portions close to the substrate edge, with a protection film having a thickness of several tens micrometers or less. Connection reinforcing terminals consist of a plurality of divided terminals which are independent of each other, and are ground terminals.
Abstract:
A hybrid integrated circuit device having high mount reliability includes a module substrate which is a ceramic wiring substrate, a plurality of electronic component parts laid out on the main surface of the module substrate, a plurality of electrode terminals laid out on the rear surface of the module substrate, and a cap which is fixed to the module substrate to cover the main surface of the module substrate. The electrode terminals include ones which are aligned along the edges of the module substrate and power voltage supply terminals which are located inner than these electrode terminals. The electrode terminals aligned along the substrate edges are coated, at least in their portions close to the substrate edge, with a protection film having a thickness of several tens micrometers or less. Connection reinforcing terminals consist of a plurality of divided terminals which are independent of each other, and are ground terminals.
Abstract:
A hybrid integrated circuit device having high mount reliability includes a module substrate which is a ceramic wiring substrate, a plurality of electronic component parts laid out on the main surface of the module substrate, a plurality of electrode terminals laid out on the rear surface of the module substrate, and a cap which is fixed to the module substrate to cover the main surface of the module substrate. The electrode terminals include ones which are aligned along the edges of the module substrate and power voltage supply terminals which are located inner than these electrode terminals. The electrode terminals aligned along the substrate edges are coated, at least in their portions close to the substrate edge, with a protection film having a thickness of several tens micrometers or less. Connection reinforcing terminals consist of a plurality of divided terminals which are independent of each other, and are ground terminals.
Abstract:
A hybrid integrated circuit device having high mount reliability comprises a module substrate which is a ceramic wiring substrate, a plurality of electronic component parts laid out on the main surface of the module substrate, a plurality of electrode terminals laid out on the rear surface of the module substrate, and a cap which is fixed to the module substrate to cover the main surface of the module substrate. The electrode terminals include a plurality of electrode terminals which are aligned along the edges of the module substrate and power voltage supply terminals which are located inner than these electrode terminals. The electrode terminals aligned along the substrate edges are coated, at least in their portions close to the substrate edge, with a protection film having a thickness of several tens micrometers or less. Connection reinforcing terminals consist of a plurality of divided terminals which are independent of each other, and are ground terminals.
Abstract:
A method of forming fixed images, including the step of applying a two-component developer containing a carrier and a toner containing a wax and a resin binder containing a crystalline polyester to a two-component development device with a linear speed of from 500 to 5,000 mm/sec, to develop the toner, wherein the crystalline polyester is contained in an amount of from 3 to 40% by weight and the wax in an amount of from 2.5 to 10% by weight, of the toner, and wherein the two-component development device comprises at least three magnet rollers which are arranged closely to each other along the perimeter of a photoconductor, wherein one magnet roller arranged on the uppermost side in the rotational direction of the photoconductor rotates in a direction opposite to the rotational direction of the photoconductor at the point therebetween, and the other magnet rollers rotate in the same direction as the photoconductor at the point therebetween. The method of forming fixed images according to the present invention forms excellent fixed images by, for example, development of a latent image formed in electrophotography, electrostatic recording method, electrostatic printing method, or the like.
Abstract translation:一种形成固定图像的方法,包括将包含载体的双组分显影剂和含有蜡的调色剂和含有结晶聚酯的树脂粘合剂施加到线性速度为500至5,000的双组分显影装置的步骤 mm /秒,以显影调色剂,其中结晶聚酯的含量为3至40重量%,蜡的含量为调色剂的2.5至10重量%,并且其中, 部件显影装置包括沿着光电导体的周边彼此紧密配置的至少三个磁体辊,其中布置在光电导体的旋转方向上的最上侧的一个磁体辊沿与该光电导体的旋转方向相反的方向旋转 光电导体在其间的点处,并且其它磁体辊在与它们之间的点处沿与光电导体相同的方向旋转。 根据本发明的形成固定图像的方法通过例如在电子照相术形成的潜像的显影,静电记录方法,静电印刷方法等来形成优良的固定图像。