Abstract:
A multi-chip stack structure and a method for fabricating the same are provided. The method for fabricating a multi-chip stack structure includes disposing a first chip group comprising a plurality of first chips on a chip carrier by using a step-like manner, disposing a second chip on the first chip on top of the first chip group, electrically connecting the first chip group and the second chip to the chip carrier through bonding wires, using film over wire (FOW) to stack a third chip on the first and the second chips with an insulative film provided therebetween, wherein the insulative film covers part of the ends of the bonding wires of the first chip on the top of the first group and at least part of the second chip, and electrically connecting the third chip to the chip carrier through bonding wires, thereby preventing directly disposing on a first chip a second chip having a planar size far smaller than that of the first chip as in the prior art that increases height of the entire structure and increases the wiring bonding difficultly.
Abstract:
A semiconductor package device, a semiconductor package structure, and fabrication methods thereof are provided, which mainly includes disposing a plurality of semiconductor chips on a wafer formed with TSVs (Through Silicon Vias) and electrically connecting the semiconductor chips to the TSVs; encapsulating the semiconductor chips with an encapsulant; and disposing a hard component on the encapsulant. The hard component ensures flatness of the wafer during a solder bump process and provides support to the wafer during a singulation process such that the wafer can firmly lie on a singulation carrier, thereby overcoming the drawbacks of the prior art, namely difficulty in mounting of solder bumps, and difficulty in cutting of the wafer.
Abstract:
A multi-chip stack structure and a method for fabricating the same are provided. The method for fabricating a multi-chip stack structure includes disposing a first chip group comprising a plurality of first chips on a chip carrier by using a step-like manner, disposing a second chip on the first chip on top of the first chip group, electrically connecting the first chip group and the second chip to the chip carrier through bonding wires, using film over wire (FOW) to stack a third chip on the first and the second chips with an insulative film provided therebetween, wherein the insulative film covers part of the ends of the bonding wires of the first chip on the top of the first group and at least part of the second chip, and electrically connecting the third chip to the chip carrier through bonding wires, thereby preventing directly disposing on a first chip a second chip having a planar size far smaller than that of the first chip as in the prior art that increases height of the entire structure and increases the wiring bonding difficultly.
Abstract:
An electro-optical module is provided, which includes: a substrate having a first surface with a groove and an opposite second surface; a plurality of support members disposed on the first surface of the substrate; at least an electro-optical element having opposite active and non-active surfaces and disposed in the groove of the substrate via the non-active surface thereof; an interposer disposed on the first surface of the substrate and the electro-optical element for electrically connecting the electro-optical element to the substrate, wherein the interposer has a through hole corresponding in position to the active surface of the electro-optical element; and a transparent plate disposed over the first surface of the substrate and the interposer through the support members and having a lens portion corresponding in position to the through hole of the interposer, thereby reducing signal losses, improving alignment precision, and achieving preferred thermal dissipation and EMI shielding effects.
Abstract:
An electro-optical module is provided, which includes: a substrate having a first surface with a groove and an opposite second surface; a plurality of support members disposed on the first surface of the substrate; at least an electro-optical element having opposite active and non-active surfaces and disposed in the groove of the substrate via the non-active surface thereof; an interposer disposed on the first surface of the substrate and the electro-optical element for electrically connecting the electro-optical element to the substrate, wherein the interposer has a through hole corresponding in position to the active surface of the electro-optical element; and a transparent plate disposed over the first surface of the substrate and the interposer through the support members and having a lens portion corresponding in position to the through hole of the interposer, thereby reducing signal losses, improving alignment precision, and achieving preferred thermal dissipation and EMI shielding effects.