摘要:
A method etching features through a stack of a silicon nitride layer over a silicon layer over a silicon oxide layer in a plasma processing chamber is provided. The silicon nitride layer is etched in the plasma processing chamber, comprising; flowing a silicon nitride etch gas; forming the silicon nitride etch gas into a plasma to etch the silicon nitride layer, and stopping the flow of the silicon nitride etch gas. The silicon layer is, comprising flowing a silicon etch gas, wherein the silicon etch gas comprises SF6 or SiF4, forming the silicon etch gas into a, and stopping the flow of the silicon etch gas. The silicon oxide layer is etched in the plasma processing chamber, comprising flowing a silicon oxide etch gas, forming the silicon oxide etch gas into a plasma, and stopping the flow of the silicon oxide etch gas.
摘要:
Methods for cleaning a substrate are provided. In one embodiment, the method includes depositing a polymer on a substrate. A cleaning gas is provided to clean a frontside, a bevel edge, and a backside of the substrate. The cleaning gas may include various reactive chemicals such as H2 and N2 in one embodiment. In another embodiment, the cleaning gas may include H2 and H2O. Plasma is initiated from the cleaning gas and used to remove polymer that formed on a bevel edge, backside, or frontside of the substrate during semiconductor processing.
摘要:
A method of forming a feature in a low-k dielectric layer is provided. A low-k dielectric layer is placed over a substrate. A patterned photoresist mask is placed over the low-k dielectric layer. At least one feature is etched into the low-k dielectric layer. A CO conditioning is preformed on the at least one feature after the at least one feature is etched. The patterned photoresist mask is stripped after the CO conditioning.
摘要:
A substrate comprising a resist layer overlying a dielectric feature, is processed in a substrate processing chamber comprising an antenna, and first and second process electrodes. A process gas comprising CO2 is introduced into the chamber. The process gas is energized to form a plasma by applying a source voltage to the antenna, and by applying to the electrodes, a first bias voltage having a first frequency of at least about 10 MHz and a second bias voltage having a second frequency of less than about 4 MHz. The ratio of the power level of the first bias voltage to the second bias voltage is sufficient to obtain an edge facet height of the underlying dielectric feature that is at least about 10% of the height of the dielectric feature.
摘要:
A method for forming via holes in an etch layer disposed below a patterned organic mask with a plurality of patterned via holes is provided. The patterned organic mask is treated by flowing a treatment gas comprising H2. A plasma is formed from the treatment gas. The patterned via holes are rounded to form patterned rounded via holes by exposing the patterned via holes to the plasma. The flow of the treatment gas is stopped. The plurality of patterned rounded via holes are transferred into the etch layer.
摘要:
A method of forming a feature in a low-k dielectric layer is provided. A low-k dielectric layer is placed over a substrate. A patterned photoresist mask is placed over the low-k dielectric layer. At least one feature is etched into the low-k dielectric layer. A CO conditioning is preformed on the at least one feature after the at least one feature is etched. The patterned photoresist mask is stripped after the CO conditioning.
摘要:
Methods for removing masking materials from a substrate having exposed low-k materials while minimizing damage to exposed surfaces of the low-k material are provided herein. In one embodiment a method for removing masking materials from a substrate includes providing a substrate having exposed low-k materials and a masking material to be removed; exposing the masking material to a first plasma formed from a reducing chemistry for a first period of time; and exposing the masking material to a second plasma formed from an oxidizing chemistry for a second period of time. The steps may be repeated as desired and may be performed in reverse order. Optionally, at least one diluent gas may be added to the oxidizing chemistry.
摘要:
Methods for removing a BARC layer from a feature are provided in the present invention. In one embodiment, the method includes providing a substrate having a feature filled with a BARC layer in an etching chamber, supplying a first gas mixture comprising NH3 gas into the chamber to etch a first portion of the BARC layer filling in the feature, and supplying a second gas mixture comprising O2 gas into the etching chamber to etch the remaining portion of the BARC layer disposed in the feature.
摘要:
A substrate comprising a resist layer overlying a dielectric feature, is processed in a substrate processing chamber comprising an antenna, and first and second process electrodes. A process gas comprising CO2 is introduced into the chamber. The process gas is energized to form a plasma by applying a source voltage to the antenna, and by applying to the electrodes, a first bias voltage having a first frequency of at least about 10 MHz and a second bias voltage having a second frequency of less than about 4 MHz. The ratio of the power level of the first bias voltage to the second bias voltage is sufficient to obtain an edge facet height of the underlying dielectric feature that is at least about 10% of the height of the dielectric feature.
摘要:
Methods for removing a BARC layer from a feature are provided in the present invention. In one embodiment, the method includes providing a substrate having a feature filled with a BARC layer in an etching chamber, supplying a first gas mixture comprising NH3 gas into the chamber to etch a first portion of the BARC layer filling in the feature, and supplying a second gas mixture comprising O2 gas into the etching chamber to etch the remaining portion of the BARC layer disposed in the feature.