Abstract:
Atomic layer deposition (ALD) or ALD-like deposition processes are used to fabricate dilute nitride III-V semiconductor materials. A first composition of process gases may be caused to flow into a deposition chamber, and a group V element other than nitrogen and one or more group III elements may be adsorbed over the substrate (in atomic or molecular form). Afterward, a second composition of process gases may be caused to flow into the deposition chamber, and N and one or more group III elements may be adsorbed over the substrate in the deposition chamber. An epitaxial layer of dilute nitride III-V semiconductor material may be formed over the substrate in the deposition chamber from the sequentially adsorbed elements.
Abstract:
Deposition chambers (102) for use with deposition systems (100) include a chamber wall (112) comprising a transparent material. The chamber wall may include an outer metrology window (122) surface extending from and at least partially circumscribed by an outer major surface of the wall, and an inner metrology window surface extending from and at least partially circumscribed by an inner major surface of the wall. The window surfaces may be oriented at angles to the major surfaces. Deposition systems include such chambers. Methods include the formation of such deposition chambers. The depositions systems and chambers may be used to perform in-situ metrology.
Abstract:
Visor injectors include a gas injector port, internal sidewalls, and at least two ridges for directing gas flow through the visor injectors. Each of the ridges extends from a location proximate a hole in the gas injector port toward a gas outlet of the visor injector and is positioned between the internal sidewalls. Deposition systems include a base with divergently extending internal sidewalls, a gas injection port, a lid, and at least two divergently extending ridges for directing gas flow through a central region of a space at least partially defined by the internal sidewalls of the base and a bottom surface of the lid. Methods of forming a material on a substrate include flowing a precursor through such a visor injector and directing a portion of the precursor to flow through a central region of the visor injector with at least two ridges.
Abstract:
Dilute nitride III-V semiconductor materials may be formed by substituting As atoms for some N atoms within a previously formed nitride material to transform at least a portion of the previously formed nitride material into a dilute nitride III-V semiconductor material that includes arsenic. Such methods may be employed in the fabrication of photoactive devices, such as photovoltaic cells and photoemitters. The methods may be carried out within a deposition chamber, such as a metalorganic chemical vapor deposition (MOCVD) or a hydride vapor phase epitaxy (HVPE) chamber.
Abstract:
A gas injector includes a base plate, a middle plate, and a top plate. The base plate, middle plate, and top plate are configured to flow a purge gas between the base plate and the middle plate and to flow a precursor gas between the middle plate and the top plate. Another gas injector includes a precursor gas inlet, a lateral precursor gas flow channel, and a plurality of precursor gas flow channels. The plurality of precursor gas flow channels extend from the at least one lateral precursor gas flow channel to an outlet of the gas injector. Methods of forming a material on a substrate include flowing a precursor between a middle plate and a top plate of a gas injector and flowing a purge gas between a base plate and the middle plate of the gas injector.
Abstract:
A deposition system includes two or more gas injectors that may be interchangeably used in a chamber of the deposition system. Each of the gas injectors may be configured to generate a sheet of flowing gas over a substrate support structure. The sheets may have differing widths, such that the gas injectors may be used with substrates having different diameters, which may enable use of the system with different substrates while maintaining efficient use of precursor gas. A method of forming such a deposition system includes forming and configuring such gas injectors to be interchangeably used at a common location within the deposition chamber. A method of using such a deposition system includes using two or more such gas injectors to deposit material on substrates having different sizes.