Abstract:
A gas injector includes a base plate, a middle plate, and a top plate. The base plate, middle plate, and top plate are configured to flow a purge gas between the base plate and the middle plate and to flow a precursor gas between the middle plate and the top plate. Another gas injector includes a precursor gas inlet, a lateral precursor gas flow channel, and a plurality of precursor gas flow channels. The plurality of precursor gas flow channels extend from the at least one lateral precursor gas flow channel to an outlet of the gas injector. Methods of forming a material on a substrate include flowing a precursor between a middle plate and a top plate of a gas injector and flowing a purge gas between a base plate and the middle plate of the gas injector.
Abstract:
Methods of depositing material on a substrate include forming a precursor gas and a byproduct from a source gas within a thermalizing gas injector. The byproduct may be reacted with a liquid reagent to form additional precursor gas, which may be injected from the thermalizing gas injector into a reaction chamber. Thermalizing gas injectors for injecting gas into a reaction chamber of a deposition system may include an inlet, a thermalizing conduit, a liquid container configured to hold a liquid reagent therein, and an outlet. A pathway may extend from the inlet, through the thermalizing conduit to an interior space within the liquid container, and from the interior space within the liquid container to the outlet. The thermalizing conduit may have a length that is greater than a shortest distance between the inlet and the liquid container. Deposition systems may include one or more such thermalizing gas injectors.
Abstract:
The present invention relates to the field of semiconductor processing and provides methods that improve chemical vapor deposition (CVD) of semiconductor materials by promoting more efficient thermalization of precursor gases prior to their reaction. In preferred embodiments, the method provides heat transfer structures and their arrangement within a CVD reactor so as to promote heat transfer to flowing process gases. In certain preferred embodiments applicable to CVD reactors transparent to radiation from heat lamps, the invention provides radiation-absorbent surfaces placed to intercept radiation from the heat lamps and to transfer it to flowing process gases.
Abstract:
Deposition systems include a reaction chamber, and a substrate support structure disposed at least partially within the reaction chamber. The systems further include at least one gas injection device and at least one vacuum device, which together are used to flow process gases through the reaction chamber. The systems also include at least one access gate through which a workpiece substrate may be loaded into the reaction chamber and unloaded out from the reaction chamber. The at least one access gate is located remote from the gas injection device. Methods of depositing semiconductor material may be performed using such deposition systems. Methods of fabricating such deposition systems may include coupling an access gate to a reaction chamber at a location remote from a gas injection device.
Abstract:
The present invention provides improved gas injectors for use with CVD (chemical vapour deposition) systems that thermalize gases prior to injection into a CVD chamber. The provided injectors are configured to increase gas flow times through heated zones and include gas-conducting conduits that lengthen gas residency times in the heated zones. The provided injectors also have outlet ports sized, shaped, and arranged to inject gases in selected flow patterns. The invention also provides CVD systems using the provided thermalizing gas injectors. The present invention has particular application to high volume manufacturing of GaN substrates.