摘要:
Semiconductor die analysis is enhanced using a system that is adapted to perturb a die in a test chamber and to detect a response from the die to the perturbation. According to an example embodiment of the present invention, a semiconductor die analysis system includes a test chamber and a docking arrangement adapted to dock with the test chamber. A die is held in the docking arrangement and is presented inside of the test chamber when the docking arrangement is docked with the chamber. Two or more perturbation devices are used to perturb the die, and controller is adapted to control the perturbation. A data acquisition arrangement receives data from the die in response to the perturbation, and the data is used for analyzing the die.
摘要:
The operability of light-based semiconductor die analysis is enhanced using a method and arrangement that directs light between a light source and a die. In one example embodiment of the present invention, a light source is directed to a die in a semiconductor analysis arrangement using a fiber optic cable. The analysis arrangement is adapted to use light received via the fiber optic cable to analyze the die. The analysis includes one or more light-based applications, such as stimulating a selected portion of the die with the light and detecting a response therefrom. In this manner, light can be directed to a die in a variety of analysis implementations, such as for analyzing a die in a test chamber.
摘要:
The operability of light-based semiconductor die analysis is enhanced using a method and arrangement that can detect light leakage between a light source and a die. In one example embodiment of the present invention, a light source is directed to a semiconductor analysis arrangement using, for example, a fiber optic cable. The analysis arrangement is adapted to use light from the light source for analyzing the die. A light detection arrangement detects a condition of light leakage from the system and generates a signal representing the condition of light leakage. The generated signal can then be used to control the semiconductor analysis arrangement, such as by deactivating the light source in response to a detected leak, or by allowing the light source to function in response to not detecting a leak.
摘要:
Analysis of a semiconductor die is enhanced by the stimulation the die and the detection of a response to the stimulation. According to an example embodiment of the present invention, a semiconductor die is analyzed using indirect stimulation of a portion of the die, and detecting a response therefrom. First, selected portion of circuitry within the die is stimulated. The stimulation of the selected portion induces a second portion of circuitry within the die to generate an external emission. The emission is detected and the die is analyzed therefrom. In one particular implementation, a response from the selected portion is inhibited from interfering with the detection of the emission from the second portion of circuitry.
摘要:
According to an example embodiment of the present invention, a defect detection approach involves detecting the existence of defects in an integrated circuit as a function of acoustic energy. Acoustic energy propagating through the device is detected. A parameter including information such as amplitude, frequency, phase, or a spectrum is developed from the detected energy and correlated to a particular defect in the device.
摘要:
Substrate removal for post-manufacturing analysis of a semiconductor device is enhanced via a method and system that use sonic energy in the control of the removal process. According to an example embodiment of the present invention, sonic energy is reflected off of a region of a semiconductor chip having a portion of substrate removed from the back side of the chip. The reflections are detected and used to determine the thickness of substrate in the back side. In this manner, the substrate removal process can be efficiently and accurately controlled.
摘要:
A resistance monitoring approach is used for removing substrate from a back side of a semiconductor device. According to an example embodiment of the present invention, substrate is removed from a semiconductor device having a circuit side opposite the back side and a resistance path in silicon substrate. The change in resistance of the resistance path is monitored. The change in resistance provides an indication of the progress of the substrate removal process. Using the change in resistance, the substrate removal process is controlled.
摘要:
Analysis of a semiconductor die having silicon-on-insulator (SOI) structure is enhanced by accessing the circuitry within the die from the back side without necessarily breaching the insulator layer of the SOI structure. According to an example embodiment of the present invention, a semiconductor die having a SOI structure and a backside opposite circuitry in a circuit side is analyzed. An atomic force microscope is scanned across a thinned portion of the back side. The microscope responds to an electrical characteristic, such as a logic state, coupled from circuitry via the insulator portion of the die over which the microscope is being scanned. The response of the microscope to the die is detected and used to detect an electrical characteristic of the die.
摘要:
Analysis of a flip-chip type IC die having SOI structure is enhanced via analysis and repair of the die that make possible analysis that would typically result in the die being in a state of disrepair. According to an example embodiment of the present invention, a focused ion beam (FIB) is directed at a back side of a flip-chip die having a circuitry in a circuit side opposite a back side, wherein the circuitry including silicon on insulator (SOI) structure. The FIB is used to remove a selected portion of substrate including a portion of the insulator of the SOI structure from the die. The removed substrate exposes an insulator region in the die, and a signal is coupled from circuitry in the die via the exposed insulator region and used to analyze the die. Material is deposited in the exposed region and the selected portion of the die that had been removed is reconstructed. The reconstruction takes place before, during or after the signal is coupled, depending upon the die being analyzed and the type of analysis being performed. In this manner, access for analyzing the die is improved via the ability to couple a signal through the insulator and to repair a portion of the die that has been altered for analysis. Analysis that would otherwise be destructive can be performed and the ability of the die to function after analysis can be maintained.
摘要:
The present invention is directed to a method for post-manufacturing analysis of a semiconductor device including a die in a semiconductor device package. According to an example embodiment of the present invention, the package is removed and the die is exposed. Conductive ions are impregnated in a region of the die and a diode is formed. Using the formed diode, target circuitry within the die is analyzed. In this manner, a diode can be formed and used for purposes such as testing or repairing a die.