摘要:
A process is provided for depositing an silicon oxide film on a substrate disposed in a process chamber. A process gas that includes a halogen source, a fluent gas, a silicon source, and an oxidizing gas reactant is flowed into the process chamber. A plasma having an ion density of at least 1011 ions/cm3 is formed from the process gas. The silicon oxide film is deposited over the substrate with a halogen concentration less than 1.0%. The silicon oxide film is deposited with the plasma using a process that has simultaneous deposition and sputtering components. The flow rate of the halogen source to the process chamber to the flow rate of the silicon source to the process chamber is substantially between 0.5 and 3.0.
摘要翻译:提供了一种在设置在处理室中的衬底上沉积氧化硅膜的工艺。 包括卤素源,流动气体,硅源和氧化性气体反应物的处理气体流入处理室。 从处理气体形成具有至少1011个离子/ cm 3的离子密度的等离子体。 氧化硅膜以低于1.0%的卤素浓度沉积在衬底上。 使用具有同时沉积和溅射组分的工艺,用等离子体沉积氧化硅膜。 卤素源到处理室的流速与硅源到处理室的流速基本上在0.5和3.0之间。
摘要:
A process is provided for depositing an silicon oxide film on a substrate disposed in a process chamber. A process gas that includes a halogen source, a fluent gas, a silicon source, and an oxidizing gas reactant is flowed into the process chamber. A plasma having an ion density of at least 1011 ions/cm3 is formed from the process gas. The silicon oxide film is deposited over the substrate with a halogen concentration less than 1.0%. The silicon oxide film is deposited with the plasma using a process that has simultaneous deposition and sputtering components. The flow rate of the halogen source to the process chamber to the flow rate of the silicon source to the process chamber is substantially between 0.5 and 3.0.
摘要翻译:提供了一种在设置在处理室中的衬底上沉积氧化硅膜的工艺。 包括卤素源,流动气体,硅源和氧化性气体反应物的处理气体流入处理室。 从处理气体形成离子密度为至少10 11个/ cm 3的等离子体。 氧化硅膜以低于1.0%的卤素浓度沉积在衬底上。 使用具有同时沉积和溅射组分的工艺,用等离子体沉积氧化硅膜。 卤素源到处理室的流速与硅源到处理室的流速基本上在0.5和3.0之间。
摘要:
A method of forming a dielectric material in a substrate gap using a high-density plasma is described. The method may include depositing a first portion of the dielectric material into the gap with the high-density plasma. The deposition may form a protruding structure that at least partially blocks the deposition of the dielectric material into the gap. The first portion of dielectric material is exposed to an etchant that includes reactive species from a mixture that includes NH3 and NF3. The etchant forms a solid reaction product with the protruding structure, and the solid reaction product may be removed from the substrate. A final portion of the dielectric material may be deposited in the gap with the high-density plasma.
摘要翻译:描述了使用高密度等离子体在衬底间隙中形成电介质材料的方法。 该方法可以包括将电介质材料的第一部分沉积到具有高密度等离子体的间隙中。 沉积可以形成至少部分地阻挡介电材料沉积到间隙中的突出结构。 电介质材料的第一部分暴露于包括来自包括NH 3和N N 3 3的混合物的反应物质的蚀刻剂。 蚀刻剂形成具有突出结构的固体反应产物,并且固体反应产物可以从基底上除去。 介电材料的最终部分可以与高密度等离子体在间隙中沉积。
摘要:
The present invention generally relates to low compressive stress doped silicate glass films for STI applications. By way of non-limited example, the stress-lowering dopant may be a fluorine dopant, a germanium dopant, or a phosphorous dopant. The low compressive stress STI films will generally exhibit a compressive stress of less than 180 MPa, and preferably less than about 170 MPa. In certain embodiment, the STI films of the invention will exhibit a compressive stress less than about 100 MPa. Further, in certain embodiments, the low compressive stress STI films of the invention will comprise between about 0.1 and 25 atomic % of the stress-lowering dopant.
摘要:
Methods are disclosed of depositing a silicon oxide film on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. A first portion of the silicon oxide film is deposited over the substrate and within the gap using a high-density plasma process. Thereafter, a portion of the deposited first portion of the silicon oxide film is etched back. This includes flowing a halogen precursor through a first conduit from a halogen-precursor source to the substrate processing chamber, forming a high-density plasma from the halogen precursor, and terminating flowing the halogen precursor after the portion has been etched back. Thereafter, a halogen scavenger is flowed to the substrate processing chamber to react with residual halogen in the substrate processing chamber. Thereafter, a second portion of the silicon oxide film is deposited over the first portion of the silicon oxide film and within the gap using a high-density plasma process.
摘要:
A processing chamber is seasoned by providing a flow of season precursors to the processing chamber. A high-density plasma is formed from the season precursors by applying at least 7500 W of source power distributed with greater than 70% of the source power at a top of the processing chamber. A season layer having a thickness of at least 5000 Å is deposited at one point using the high-density plasma. Each of multiple substrates is transferred sequentially into the processing chamber to perform a process that includes etching. The processing chamber is cleaned between sequential transfers of the substrates.
摘要:
Methods are disclosed for depositing a silicon oxide film on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. A silicon-containing gas, an oxygen-containing gas, and a fluent gas are flowed into the substrate processing chamber. A high-density plasma is formed from the silicon-containing gas, the oxygen-containing gas, and the fluent gas. A first portion of the silicon oxide film is deposited using the high-density plasma at a deposition rate between 900 and 6000 Å/min and with a deposition/sputter ratio greater than 30. The deposition/sputter ratio is defined as a ratio of a net deposition rate and a blanket sputtering rate to the blanket sputtering rate. Thereafter, a portion of the deposited first portion of the silicon oxide film is etched. A second portion of the silicon oxide film is deposited over the etched portion of the silicon oxide film.
摘要:
A processing chamber is seasoned by providing a flow of season precursors to the processing chamber. A high-density plasma is formed from the season precursors by applying at least 7500 W of source power distributed with greater than 70% of the source power at a top of the processing chamber. A season layer having a thickness of at least 5000 Å is deposited at one point using the high-density plasma. Each of multiple substrates is transferred sequentially into the processing chamber to perform a process that includes etching. The processing chamber is cleaned between sequential transfers of the substrates.
摘要:
Methods are disclosed of depositing a silicon oxide film on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. A first portion of the silicon oxide film is deposited over the substrate and within the gap using a high-density plasma process. Thereafter, a portion of the deposited first portion of the silicon oxide film is etched back. This includes flowing a halogen precursor through a first conduit from a halogen-precursor source to the substrate processing chamber, forming a high-density plasma from the halogen precursor, and terminating flowing the halogen precursor after the portion has been etched back. Thereafter, a halogen scavenger is flowed to the substrate processing chamber to react with residual halogen in the substrate processing chamber. Thereafter, a second portion of the silicon oxide film is deposited over the first portion of the silicon oxide film and within the gap using a high-density plasma process.
摘要:
The present invention generally relates to low compressive stress doped silicate glass films for STI applications. By way of non-limited example, the stress-lowering dopant may be a fluorine dopant, a germanium dopant, or a phosphorous dopant. The low compressive stress STI films will generally exhibit a compressive stress of less than 180 MPa, and preferably less than about 170 MPa. In certain embodiment, the STI films of the invention will exhibit a compressive stress less than about 100 MPa. Further, in certain embodiments, the low compressive stress STI films of the invention will comprise between about 0.1 and 25 atomic % of the stress-lowering dopant.