Abstract:
Methods and apparatuses are provided for reducing sweat production via, for example, the removal, disablement, and incapacitation of sweat glands in the epidermis, dermis and subdermal tissue regions of a patient. In one embodiment, a method of treating a patient is provided which involves identifying a patient having a condition of excessive sweating, positioning an energy delivery device proximate to a skin tissue of the patient and delivering energy to sweat glands to halt secretion of sweat. The energy delivery device may include microwave delivery devices, RF delivery devices, and cryogenic therapy devices. Some embodiments may include using a cooling element for avoiding destruction of non-target tissue and/or a suction device to localize treatment at specific portions of the skin fold.
Abstract:
An OLED lighting apparatus includes: an OLED light panel; a first electrode; a second electrode; and at least one resistor connected between the OLED light panel and at least one of the first and second electrodes; first sets of terminals on opposite sides of the module connected to the first and second electrodes; and second sets of terminals on opposite sides of the module, wherein the lighting circuit is connected in series between the first sets of terminals.
Abstract:
Disclosed is a light emitting diode lamp including a plurality of LED modules having a plurality of LEDs, the plurality of LEDs being arranged in a plurality of zones, a plurality of drive modules each respectively providing pulsed direct current power to one of the plurality of zones, and LED lamp controller electrically connected to the plurality of drive modules.
Abstract:
A light emitting diode bulb includes: a base having a screw-in type electrical connector at a first end of the base; a power converter in the base for converting alternating current voltage into direct current voltage; a plurality of light emitting diode modules stacked on the base, wherein each of the light emitting diode modules have a plurality of side-emitting light emitting diodes; and a cover surrounding the plurality of light emitting diode modules stacked on the base.
Abstract:
The present invention is directed to systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy. In one embodiment of the invention a medical device and associated apparatus and procedures are used to treat dermatological conditions using microwave energy.
Abstract:
The present invention relates to a graphene-nanoparticle composite having a structure in which nanoparticles are crystallized at a high density in a carbon-based material, for example, graphene, and, more particularly, to a graphene-nanoparticle composite capable of remarkably improving physical properties such as contact characteristics between basal planes of graphene and conductivity since nanoparticles are included as a large amount of 20 to 50% by weight, based on 100% by weight of graphene, and a method of preparing the same.
Abstract:
A light guide plate having a top surface through which light is emitted, a bottom surface opposite to the top surface and a side surface between the top and bottom surfaces, a bottom reflector on the bottom surface for reflecting light at the bottom surface back into the light guide plate, light emitting diodes at the side surface and a side reflector on the side surface for reflecting light at the side surface back into the light guide plate, wherein the side reflector on the side surface has an opening corresponding to at least one of the light emitting diodes
Abstract:
A supple, globally flexible, composite protective material having guard plates on a substrate with a clearly visible pattern. The substrate is flexible and has a surface with a colored pattern including two or more colors. The guard plates are small, non-overlapping, printed resin material members having major and minor dimensions and are arranged in a predetermined pattern over a substantial portion of the surface of the substrate. In one embodiment of the invention the guard plates are transparent or translucent to visible light so that the colored pattern on the surface of the substrate is visible. In another embodiment the colors of the guard plates blend in with the colored pattern of the substrate.
Abstract:
The present invention relates to devices and methods for the treatment of diseases in the vasculature, and more specifically, devices and methods for treatment of aneurysms found in blood vessels. In a first embodiment of the present invention, a two part prostheses, where one part is an expandable sponge structure and the other part is an expandable tubular mesh structure, is provided. In the first embodiment, the expandable sponge structure is intended to fill the aneurysm cavity to prevent further dilatation of the vessel wall by creating a buffer or barrier between the pressurized pulsating blood flow and the thinning vessel wall. In the first embodiment, the expandable tubular mesh structure is placed across the aneurysm, contacting the inner wall of healthy vessel proximal and distal to the aneurysm.
Abstract:
Methods and apparatuses are provided for reducing sweat production via, for example, the removal, disablement, and incapacitation of sweat glands in the epidermis, dermis and subdermal tissue regions of a patient. In one embodiment, a method of treating a patient is provided which involves identifying a patient having a condition of excessive sweating, positioning an energy delivery device proximate to a skin tissue of the patient and delivering energy to sweat glands to halt secretion of sweat. The energy delivery device may include microwave delivery devices, RF delivery devices, and cryogenic therapy devices. Some embodiments may include using a cooling element for avoiding destruction of non-target tissue and/or a suction device to localize treatment at specific portions of the skin fold.