摘要:
Noble metal may be used as a non-oxidizing diffusion barrier to prevent diffusion from copper lines. A diffusion barrier may be formed of a noble metal formed over an adhesion promoting layer or by a noble metal cap over an oxidizable diffusion barrier. The copper lines may also be covered with a noble metal.
摘要:
Noble metal may be used as a non-oxidizing diffusion barrier to prevent diffusion from copper lines. A diffusion barrier may be formed of a noble metal formed over an adhesion promoting layer or by a noble metal cap over an oxidizable diffusion barrier. The copper lines may also be covered with a noble metal.
摘要:
A method for forming a metal carbide layer begins with providing a substrate, an organometallic precursor material, at least one doping agent such as nitrogen, and a plasma such as a hydrogen plasma. The substrate is placed within a reaction chamber; and heated. A process cycle is then performed, where the process cycle includes pulsing the organometallic precursor material into the reaction chamber, pulsing the doping agent into the reaction chamber, and pulsing the plasma into the reaction chamber, such that the organometallic precursor material, the doping agent, and the plasma react at the surface of the substrate to form a metal carbide layer. The process cycles can be repeated and varied to form a graded metal carbide layer.
摘要:
A barrier and seed layer for a semiconductor damascene process is described. The seed layer is formed from a noble metal with an intermediate region between the barrier and noble metal layers to prevent oxidation of the barrier layer.
摘要:
A method for forming a copper interconnect is described. An opening in a dielectric layer disposed on a substrate is formed. A barrier layer is formed on the opening. A seed layer is formed on the barrier layer. The seed layer includes a noble metal copper alloy, the copper having less than 50% of the atomic weight of the noble metal copper alloy.
摘要:
Embodiments of the invention provide a relatively hydrophilic layer in a low k dielectric layer. The hydrophilic layer may be formed by exposing the dielectric layer to light having enough energy to break Si—C and C—C bonds but not enough to break Si—O bonds.
摘要:
A method for forming a copper interconnect is described. An opening in a dielectric layer disposed on a substrate is formed. A barrier layer is formed on the opening. A seed layer is formed on the barrier layer. The seed layer includes a noble metal copper alloy, the copper having less than 50% of the atomic weight of the noble metal copper alloy.
摘要:
Apparatus and methods of fabricating an atomic layer deposited tantalum containing adhesion layer within at least one dielectric material in the formation of a metal, wherein the atomic layer deposition tantalum containing adhesion layer is sufficiently thin to minimize contact resistance and maximize the total cross-sectional area of metal, including but not limited to tungsten, within the contact.
摘要:
A surface may be selectively coated with a polymer using an induced surface grafting or polymerization reaction. The reaction proceeds in those regions that are polymerizable and not in other regions. Thus, a semiconductor structure having organic regions and metal regions exposed, for example, may have the organic polymers formed selectively on the organic regions and not on the unpolymerizable or metal regions.
摘要:
Single imido tungsten imido precursors are described for the deposition of tungsten nitride on a substrate by processes such as metal organic chemical vapor deposition. The precursors may be employed to form diffusion barrier layers on microelectronic devices. A method for forming tungsten nitride layers includes the steps of providing a tungsten imido species having the formula LyW(NR)Xn, where R is a carbon containing group, y is an integer between 0 and 5, n is an integer between 0 and 4 and Ly and Xn are selected from the group of non-imido ligands. The single imido tungsten imido species is flowed to a surface of a substrate where the single imido tungsten imido species decomposes to form a tungsten nitride layer.