摘要:
Use of a strong reducing agent such as calcium metal allows complete reduction of refractory and difficulty reducible mixed metal iron oxides to form alloys. The powdered iron-based alloys can thus be prepared at significantly lower temperature than by the conventional melt technique.
摘要:
Methods are provided for modifying hydrogenation catalysts having silica supports (or other non-alumina supports) with additional alumina, and using such catalysts to achieve unexpectedly superior hydrogenation of feedstocks. The modified hydrogenation catalysts can have a relatively low cracking activity while providing an increased activity for hydrogenation.
摘要:
In a process for the dehydrogenation of dehydrogenatable hydrocarbons, a feed comprising dehydrogenatable hydrocarbons is contacted with a catalyst comprising a support and a dehydrogenation component under dehydrogenation conditions effective to convert at least a portion of the dehydrogenatable hydrocarbons in the feed. The catalyst is produced by a method comprising treating the support with a liquid composition comprising the dehydrogenation component or a precursor thereof and at least one organic dispersant selected from an amino alcohol and an amino acid.
摘要:
The invention relates to a method for hydroprocessing hydrocarbon feedstocks, said process comprising contacting a hydrocarbon feedstock under hydroprocessing conditions with a bulk catalyst composition comprising bulk metal particles that comprise at least one Group VIII non-noble metal, at least one Group VIB metal and nanoparticles. The bulk metal catalyst composition comprises bulk metal particles that may be prepared by a manufacturing process comprising the steps of combining in a reaction mixture (i) dispersible nanoparticles having a dimension of less than about 1 μm upon being dispersed in a liquid, (ii) at least one Group VIII non-noble metal compound, (iii) at least one Group VIB metal compound, and (iv) a protic liquid; and reacting the at least one Group VIII non-noble metal compound and the at least one Group VIB metal in the presence of the nanoparticles.
摘要:
The present invention relates to a catalytic process for removing organonitrogen species from hydrocarbon mixtures such as refinery process feedstreams. More particularly, this invention relates to a new operating and catalyst loading strategies based on organonitrogen concentration, composition, and structure.
摘要:
Described herein is a catalyst precursor composition comprising at least one metal from Group 6 of the Periodic Table of the Elements, at least one metal from Groups 8-10 of the Periodic Table of the Elements, and a reaction product formed from (i) a first organic compound containing at least one amine group, and (ii) a second organic compound separate from said first organic compound and containing at least one carboxylic acid group. A process for preparing the catalyst precursor composition is also described, as is sulfiding the bulk mixed metal oxide catalyst precursor composition to form a hydroprocessing catalyst.
摘要:
The instant invention relates to a process to produce liquid products through the hydroprocessing of hydrocarbonaceous feedstreams in the presence of a bulk metal hydroprocessing catalyst.
摘要:
A catalyst composition containing a medium pore molecular sieve having deposited thereon an active metal oxide and at least one hydrogenation metal selected from the Group VIII and Group VIB metals for use in hydrodewaxing lube oil boiling range feedstreams.
摘要:
A new catalyst based on coprecipitated mixtures or solid solutions of alkaline earth oxides and rare earth oxides, such as mixtures or solid solutions of magnesium oxide and cerium oxide, Mg.sub.5 CeO.sub.x, or magnesium oxide and yttrium oxide, Mg.sub.5 YO.sub.x, which catalyze aldol condensation reactions leading to the selective formation of branched C.sub.4 alcohols. The catalysts may also contain a Group IB metallic component and further an alkali dopant. Preferably, Cu in concentrations at or lower than 30 wt % and K in concentrations at or lower than 3 wt % will be used. The catalyst affords the advantage of being run at pressures lower than those required by prior art catalysts and are more active and selective to methanol and isobutanol.