Method and system for dynamic task selection suitable for mapping external inputs and internal goals toward actions that solve problems or elicit rewards
    1.
    发明授权
    Method and system for dynamic task selection suitable for mapping external inputs and internal goals toward actions that solve problems or elicit rewards 有权
    用于动态任务选择的方法和系统,适用于将外部输入和内部目标映射到解决问题或引发奖励的动作

    公开(公告)号:US08762305B1

    公开(公告)日:2014-06-24

    申请号:US13287953

    申请日:2011-11-02

    摘要: The present invention relates to a system for mapping external inputs and internal goals toward actions that solve problems or elicit external rewards. The present invention allows an instructor to test and train an agent to perform dynamic task selection (executive control) by using a schema that computes the agent's emotional and motivational states from reward/punishment inputs and sensory inputs (visual, auditory, kinematic, tactile, olfactory, somatosensory, and motor inputs). Specifically, the invention transforms the sensory inputs into unimodal and bimodal spatio-temporal schemas that are combined with the reward/punishment inputs and with the emotional and motivation states to create an external/internal schema (EXIN schema), that provides a compressed representation assessing the agent's emotions, motivations, and rewards. The invention uses the EXIN schema to create a motor schema to be executed by the agent to dynamically perform the task selected by the instructor.

    摘要翻译: 本发明涉及一种用于将外部输入和内部目标映射到解决问题或引发外部奖励的动作的系统。 本发明允许教师通过使用从奖励/惩罚输入和感觉输入(视觉,听觉,运动学,触觉学习和计算机学习)来计算代理人的情绪和动机状态的模式来测试和训练代理来执行动态任务选择(执行控制) 嗅觉,体感和运动输入)。 具体来说,本发明将感官输入转换成单峰和双峰时空模式,其与奖励/惩罚输入以及情绪和动机状态结合以创建外部/内部模式(EXIN模式),其提供压缩表示评估 代理人的情绪,动机和奖励。 本发明使用EXIN模式来创建要由代理执行的运动模式以动态地执行教师所选择的任务。

    System for anomaly detection
    2.
    发明授权
    System for anomaly detection 有权
    异常检测系统

    公开(公告)号:US08468104B1

    公开(公告)日:2013-06-18

    申请号:US12592837

    申请日:2009-12-02

    IPC分类号: G06F15/18

    CPC分类号: G06K9/6222 G01S13/887

    摘要: Described is a system for anomaly detection to detect an anomalous object in an image, such as a concealed object beneath a person's clothing. The system is configured to receive, in a processor, at least one streaming peaked curve (R) representative of a difference between an input and a chosen category for a given feature. A degree of match is then generated between the input and the chosen category for all features. Finally, the degree of match is compared against a predetermined anomaly threshold and, if the degree of match exceeds the predetermined anomaly threshold, then the current feature is designated as an anomaly.

    摘要翻译: 描述了用于异常检测的系统,用于检测图像中的异常物体,例如人的衣服下方的隐藏物体。 系统被配置为在处理器中接收代表给定特征的输入和所选类别之间的差异的至少一个流式峰值曲线(R)。 然后在所有功能的输入和所选类别之间生成匹配度。 最后,将匹配度与预定的异常阈值进行比较,并且如果匹配度超过预定的异常阈值,则将当前特征指定为异常。

    APPARATUS, METHOD, AND COMPUTER-READABLE MEDIUM FOR ROBUST RESPONSE TO ADVERSARIAL PERTURBATIONS USING HYPERDIMENSIONAL VECTORS

    公开(公告)号:US20210327376A1

    公开(公告)日:2021-10-21

    申请号:US17359520

    申请日:2021-06-26

    申请人: Narayan Srinivasa

    发明人: Narayan Srinivasa

    摘要: Apparatuses, methods, and articles of manufacture are disclosed. An example apparatus includes processor circuitry to assign a location value hyperdimensional vector (HDV) to a location in an image of a first patch of one or more pixels, assign at least a first channel HDV to the first patch, determine at least one pixel intensity value HDV for each of the one or more pixels in the first patch, bind together each of the pixel intensity value HDVs into at least one patch intensity value HDV, bind together the at least first channel HDV and the at least one patch intensity value HDV to produce a patch consensus intensity HDV, and generate a first hyperdimensional representation patch value HDV of the first patch by binding together at least a combination of the patch consensus intensity HDV and the location value HDV.

    Synaptic time multiplexing
    5.
    发明授权

    公开(公告)号:US09697462B1

    公开(公告)日:2017-07-04

    申请号:US14588929

    申请日:2015-01-03

    IPC分类号: G06N5/00 G06F1/00 G06N3/04

    CPC分类号: G06N3/04

    摘要: A synaptic time-multiplexed (STM) neuromorphic network includes a neural fabric that includes nodes and switches to define inter-nodal connections between selected nodes of the neural fabric. The STM neuromorphic network further includes a neuromorphic controller to form subsets of a set of the inter-nodal connections representing a fully connected neural network. Each subset is formed during a different time slot of a plurality of time slots of a time multiplexing cycle of the STM neuromorphic network. In combination, the inter-nodal connection subsets implement the fully connected neural network. A method of synaptic time multiplexing a neuromorphic network includes providing the neural fabric and forming the subsets of the set of inter-nodal connections.

    METHOD AND SYSTEM FOR CONCURRENT EVENT FORECASTING
    6.
    发明申请
    METHOD AND SYSTEM FOR CONCURRENT EVENT FORECASTING 有权
    同步事件预测的方法和系统

    公开(公告)号:US20110099136A1

    公开(公告)日:2011-04-28

    申请号:US12604606

    申请日:2009-10-23

    IPC分类号: G06N3/12

    摘要: A method and system for characterizing, detecting, and predicting or forecasting multiple target events from a past history of these events includes compressing temporal data streams into self-organizing map (SOM) clusters, and determining trajectories of the temporal streams via the clusters to predict the multiple target events. The system includes an evolutionary multi-objective optimization (EMO) module for processing the temporal data streams, which are obtained from a plurality of heterogeneous domains; a SOM module for characterizing the temporal data streams into self-organizing map clusters; and a target event prediction (TEP) module for generating prediction models of the map clusters. The SOM module employs a vector quantization method that places a set of vectors on a low-dimensional grid in an ordered fashion. The prediction models each include trajectories of the temporal data streams, and the system predicts the multiple target events using the trajectories.

    摘要翻译: 用于从这些事件的过去历史表征,检测和预测或预测多个目标事件的方法和系统包括将时间数据流压缩为自组织映射(SOM)集群,以及通过集群确定时间流的轨迹以预测 多个目标事件。 该系统包括用于处理从多个异构域获得的时间数据流的进化多目标优化(EMO)模块; 用于将时间数据流表征为自组织映射簇的SOM模块; 以及用于生成地图簇的预测模型的目标事件预测(TEP)模块。 SOM模块采用矢量量化方法,其以有序的方式将一组向量放置在低维度网格上。 预测模型各自包括时间数据流的轨迹,并且系统使用轨迹来预测多个目标事件。

    System for temporal prediction
    7.
    发明授权
    System for temporal prediction 有权
    时间预测系统

    公开(公告)号:US07797259B2

    公开(公告)日:2010-09-14

    申请号:US11786949

    申请日:2007-04-12

    IPC分类号: G06E1/00

    CPC分类号: G06N3/0436

    摘要: Described is a system for temporal prediction. The system includes an extraction module, a mapping module, and a prediction module. The extraction module is configured to receive X(1), . . . X(n) historical samples of a time series and utilize a genetic algorithm to extract deterministic features in the time series. The mapping module is configured to receive the deterministic features and utilize a learning algorithm to map the deterministic features to a predicted {circumflex over (x)}(n+1) sample of the time series. Finally, the prediction module is configured to utilize a cascaded computing structure having k levels of prediction to generate a predicted {circumflex over (x)}(n+k) sample. The predicted {circumflex over (x)}(n+k) sample is a final temporal prediction for k future samples.

    摘要翻译: 描述了一种用于时间预测的系统。 该系统包括提取模块,映射模块和预测模块。 提取模块被配置为接收X(1),。 。 。 X(n)时间序列的历史样本,并利用遗传算法提取时间序列中的确定性特征。 映射模块被配置为接收确定性特征并利用学习算法来将确定性特征映射到时间序列的预测{(x)}(n + 1)样本。 最后,预测模块被配置为利用具有k个预测级别的级联计算结构来生成预测的(x(x)}(n + k)个样本。 预测的({x}}(n + k)样本的回归是k个未来样本的最终时间预测。

    Method and apparatus for illumination compensation of digital images
    8.
    发明授权
    Method and apparatus for illumination compensation of digital images 有权
    数字图像照明补偿的方法和装置

    公开(公告)号:US07787709B2

    公开(公告)日:2010-08-31

    申请号:US11541711

    申请日:2006-09-29

    申请人: Narayan Srinivasa

    发明人: Narayan Srinivasa

    IPC分类号: G06K9/32 G06K9/40 G06K9/36

    摘要: A method for enhancing the quality of a digital image by using a single user-defined parameter. A virtual image is created based on the single user-defined parameter and the original digital image. An adaptive contrast enhancement algorithm operates on a logarithmically compressed version of the virtual image to produce adaptive contrast values for each pixel in the virtual image. A dynamic range adjustment algorithm is used to generate logarithmic enhanced pixels based on the adaptive contrast values and the pixels of the logarithmically compressed version of the virtual image. The logarithmic enhanced pixels are exponentially expanded and scaled to produce a compensated digital image.

    摘要翻译: 一种通过使用单个用户定义的参数来增强数字图像的质量的方法。 基于单个用户定义的参数和原始数字图像创建虚拟图像。 自适应对比度增强算法对虚拟图像的对数压缩版本进行操作,以为虚拟图像中的每个像素产生自适应对比度值。 动态范围调整算法用于基于自适应对比度值和虚拟图像的对数压缩版本的像素来生成对数增强像素。 对数增强像素以指数方式扩展和缩放以产生补偿数字图像。

    Method for characterization, detection and prediction for target events
    10.
    发明授权
    Method for characterization, detection and prediction for target events 有权
    用于目标事件的表征,检测和预测的方法

    公开(公告)号:US07292960B1

    公开(公告)日:2007-11-06

    申请号:US11427825

    申请日:2006-06-30

    IPC分类号: G06F17/40 G06F17/00 G06F19/00

    CPC分类号: G06Q50/22 G06Q10/06

    摘要: A method for characterizing, detecting and predicting an event of interest, a target event, based on temporal patterns useful for predicting a probable occurrence of the target event is disclosed. Measurable events and their features are defined and quantized into event classes. Temporal series of the event classes are analyzed, and preliminary prediction rules established by analyzing temporal patterns of the event classes that precede an occurrence of the target event using a sliding time window. The quality of the preliminary prediction rules is evaluated and parameters thereof are optimized by using a defined fitness function, thereby defining finalized prediction rules. The finalized prediction rules are then made available for application on temporal series of the event classes to forecast a probable occurrence of the target event.

    摘要翻译: 公开了一种用于表征,检测和预测感兴趣事件的方法,基于用于预测目标事件的可能出现的时间模式的目标事件。 可测量事件及其特征被定义和量化为事件类。 分析事件类的时间序列,并通过使用滑动时间窗口分析在事件发生之前的事件类的时间模式来建立初步预测规则。 评估初步预测规则的质量,并通过使用定义的适应度函数来优化其参数,从而定义最终预测规则。 然后,最终确定的预测规则可用于事件类别的时间序列上的应用以预测目标事件的可能发生。