摘要:
Slurry compositions and method used in a chemical-mechanical polishing process for manufacturing a semiconductor device may include a surfactant and a positive-ionic high molecular compound. The surfactant and the positive-ionic high molecular compound may form first and second passivation layers on the surface of an exposed polysilicon layer.
摘要:
For planarizing an IC (integrate circuit) material, a first slurry is dispensed for a first planarization of the IC material using the first slurry, and a second slurry is dispensed for a second planarization of the IC material using the second slurry. The first and second slurries are different. For example, the first slurry is silica based for faster planarization during the first planarization. Thereafter, the second planarization is performed with the second slurry that is ceria based with higher planarity for attaining sufficient planarization of the IC material.
摘要:
For planarizing an IC (integrate circuit) material, a first slurry is dispensed for a first planarization of the IC material using the first slurry, and a second slurry is dispensed for a second planarization of the IC material using the second slurry. The first and second slurries are different. For example, the first slurry is silica based for faster planarization during the first planarization. Thereafter, the second planarization is performed with the second slurry that is ceria based with higher planarity for attaining sufficient planarization of the IC material.
摘要:
A slurry, chemical mechanical polishing (CMP) method using the slurry, and method of forming a surface of a capacitor using the slurry. The slurry may include an abrasive, an oxidizer, and at least one pH controller to control a pH of the slurry.
摘要:
A slurry, chemical mechanical polishing (CMP) method using the slurry, and method of forming metal wiring using the slurry. The slurry may include a polishing agent, an oxidant, and at least one defect inhibitor to protect the metal film. The CMP method and method of forming metal wiring may employ one or two slurries with at least one of the slurries including at least one defect inhibitor.
摘要:
A slurry, chemical mechanical polishing (CMP) method using the slurry, and method of forming metal wiring using the slurry. The slurry may include a polishing agent, an oxidant, and at least one defect inhibitor to protect the metal film. The CMP method and method of forming metal wiring may employ one or two slurries with at least one of the slurries including at least one defect inhibitor.
摘要:
A slurry, chemical mechanical polishing (CMP) method using the slurry, and method of forming metal wiring using the slurry. The slurry may include a polishing agent, an oxidant, and at least one defect inhibitor to protect the metal film. The CMP method and method of forming metal wiring may employ one or two slurries with at least one of the slurries including at least one defect inhibitor.
摘要:
Mask patterns used for forming patterns or trenches may include first mask patterns, which may be formed by a typical photolithography process, and second mask patterns, which may be formed in a self-aligned manner between adjacent first mask patterns. A sacrificial layer may be deposited and planarized such that the tops of the first mask patterns and the second mask patterns have planar surfaces. After the planarization of the sacrificial layer, the remaining the sacrificial layer may be removed by an ashing process.
摘要:
Mask patterns used for forming patterns or trenches may include first mask patterns, which may be formed by a typical photolithography process, and second mask patterns, which may be formed in a self-aligned manner between adjacent first mask patterns. A sacrificial layer may be deposited and planarized such that the tops of the first mask patterns and the second mask patterns have planar surfaces. After the planarization of the sacrificial layer, the remaining the sacrificial layer may be removed by an ashing process.
摘要:
A method of fabricating a contact plug of a semiconductor device is provided, the method includes forming a gate pattern on a substrate, forming a capping pattern to cover an upper surface and sidewalls of the gate pattern, forming an interlayer insulation layer on the substrate such that the interlayer insulation layer exposes an upper surface of the capping pattern, and removing a portion of the capping pattern and the interlayer insulation layer such that the upper surface of the capping pattern is planarized.