摘要:
A method of forming a low-k dielectric material layer comprising the following steps. A first dielectric material sub-layer is formed over a substrate. The first dielectric material sub-layer is treated with an energy treatment to form a hardened layer on the upper surface of the first dielectric material sub-layer. A second dielectric material sub-layer is formed over the hardened layer, wherein the first dielectric sub-layer, the hardened layer and the second dielectric sub-layer comprise the low-k dielectric material layer. And a dual damascene structure and a dielectric material structure formed thereby.
摘要:
A method of forming a low-k dielectric material layer comprising the following steps. A first dielectric material sub-layer is formed over a substrate. The first dielectric material sub-layer is treated with an energy treatment to form a hardened layer on the upper surface of the first dielectric material sub-layer. A second dielectric material sub-layer is formed over the hardened layer, wherein the first dielectric sub-layer, the hardened layer and the second dielectric sub-layer comprise the low-k dielectric material layer. And a dual damascene structure and a dielectric material structure formed thereby.
摘要:
A method for fabricating dielectric barrier layers in integrated circuit structures such as damascene structures is provided. In one embodiment, a low-k dielectric layer formed on a substrate is provided. The low-k dielectric layer has at least one opening exposing an underlying metal layer. A first silicon carbide barrier layer is formed to conformally cover the exposed surfaces of the opening. A portion of the first silicon carbide barrier layer above the low-k dielectric layer and over the bottom of the opening is converted with an oxidation treatment into a layer of silicon oxide. The silicon oxide layer is removed above the low-k dielectric layer and from the bottom of the opening. The opening is filled with a conductive layer in electrical contact with the underlying metal layer. The conductive layer is removed above the low-k dielectric layer to a predetermined depth below the low-k dielectric layer to define a recess therebelow. A second silicon carbide barrier layer is formed to cover the recess and above the low-k dielectric layer and the first silicon carbide barrier layer so as to seal the top of the structure. A portion of the second silicon carbide barrier layer above the low-k dielectric layer is converted with an oxidation treatment into a layer of silicon oxide. The layer of silicon oxide is then removed and the metal conductive layer is fully encapsulated by the silicon carbide barrier layer.
摘要:
A method for determining a material layer thickness transmissive to infrared (IR) energy in a semiconductor wafer manufacturing process including providing at least one semiconductor wafer comprising an IR transmissive layer; passing IR energy through the IR transmissive layer to produce at least one Fourier transform infrared (FTIR) spectrum; and, determining an amount of the IR transmissive layer present according to an amount of IR energy absorbed by a predetermined contributing characteristic vibrational mode portion of the FTIR spectrum.
摘要:
A method and system for monitoring the quality of a slurry utilized in a chemical mechanical polishing operation. A slurry is generally delivered through a tubular path during a chemical mechanical polishing operation. A laser light is generally transmitted from a laser light source, such that the laser light comes into contact with the slurry during the chemical mechanical polishing operation. The laser light can then be detected, after the laser light comes into contact with the slurry to thereby monitor the quality of the slurry utilized during the chemical mechanical polishing operation. The laser light that comes into contact with the slurry can be also be utilized to monitor a mixing ratio associated with the slurry.
摘要:
A method and system for monitoring the quality of a slurry utilized in a chemical mechanical polishing operation. A slurry is generally delivered through a tubular path during a chemical mechanical polishing operation. A laser light is generally transmitted from a laser light source, such that the laser light comes into contact with the slurry during the chemical mechanical polishing operation. The laser light can then be detected, after the laser light comes into contact with the slurry to thereby monitor the quality of the slurry utilized during the chemical mechanical polishing operation. The laser light that comes into contact with the slurry can be also be utilized to monitor a mixing ratio associated with the slurry.
摘要:
A method for fabricating dielectric barrier layers in integrated circuit structures such as damascene structures is provided. In one embodiment, a low-k dielectric layer formed on a substrate is provided. The low-k dielectric layer has at least one opening exposing an underlying metal layer. A first silicon carbide barrier layer is formed to conformally cover the exposed surfaces of the opening. A portion of the first silicon carbide barrier layer above the low-k dielectric layer and over the bottom of the opening is converted with an oxidation treatment into a layer of silicon oxide. The silicon oxide layer is removed above the low-k dielectric layer and from the bottom of the opening. The opening is filled with a conductive layer in electrical contact with the underlying metal layer. The conductive layer is removed above the low-k dielectric layer to a predetermined depth below the low-k dielectric layer to define a recess therebelow. A second silicon carbide barrier layer is formed to cover the recess and above the low-k dielectric layer and the first silicon carbide barrier layer so as to seal the top of the structure. A portion of the second silicon carbide barrier layer above the low-k dielectric layer is converted with an oxidation treatment into a layer of silicon oxide. The layer of silicon oxide is then removed and the metal conductive layer is fully encapsulated by the silicon carbide barrier layer.
摘要:
A method of forming spacers with different widths on a semiconductor substrate, includes the steps of disposing a first spacer layer over the substrate, defining the first spacer layer into a plurality of spacers of a first width, and disposing a second spacer layer selectively over the first spacer layer of a number of the spacers preselected for the second spacer layer, the predetermined number of the spacers with the second spacer layer each having a second width which is different from the first width.
摘要:
A method of forming pluralities of gate sidewall spacers each plurality comprising different associated gate sidewall spacer widths including providing a first plurality of gate structures; blanket depositing a first dielectric layer over the first plurality of gate structures; blanket depositing a second dielectric layer over the first dielectric layer; etching back through a thickness of the first and second dielectric layers; blanket depositing a first photoresist layer to cover the first plurality and patterning to selectively expose at least a second plurality of gate structures; isotropically etching the at least a second plurality of gate structures for a predetermined time period to selectively etch away a predetermined portion of the first dielectric layer; and, selectively etching away the second dielectric layer to leave gate structures comprising a plurality of associated sidewall spacer widths.
摘要:
An LCD panel including a first substrate, a second substrate and a smectic liquid crystal layer is disclosed. The first substrate includes a first electrode, a second electrode and a first horizontal alignment film. The first electrode has plural first portions. The second electrode has plural second portions. The first portions are spaced by the second portions. The electrical field directions formed between the first portions and the second portions are perpendicular to the surface of the first substrate. The electrical field direction on each first portion is opposite to that on each second portion. The first horizontal alignment film covers the first and the second electrodes. The second substrate includes a second horizontal alignment film. The horizontal rubbing direction of the first horizontal alignment film is parallel to that of the second horizontal alignment film. The smectic liquid crystal layer is sealed between the first and the second substrates.