-
公开(公告)号:US11773502B2
公开(公告)日:2023-10-03
申请号:US17476894
申请日:2021-09-16
Applicant: The Boeing Company
Inventor: Vijaykumar S. Ijeri , Om Prakash , Stephen P. Gaydos , Nitin Pandurang Wasekar , Govindan Sundararajan , Dameracharla Srinivasa Rao
Abstract: An electrolyte solution for iron-tungsten plating is prepared by dissolving in an aqueous medium a divalent iron salt (e.g., iron (II) sulfate) and an alkali metal citrate (e.g., sodium citrate, potassium citrate, or other alkali metal citrate) to form a first solution, dissolving in the first solution a tungstate salt (e.g., sodium tungstate, potassium tungstate, or other potassium tungstate) to form a second solution, and dissolving in the second solution a citric acid to form the electrolyte solution. An iron-tungsten coating is formed on a substrate using the electrolyte solution by passing a current between a cathode and an anode through the electrolyte solution to deposit iron and tungsten on the substrate.
-
公开(公告)号:US11739225B2
公开(公告)日:2023-08-29
申请号:US16533647
申请日:2019-08-06
Applicant: The Boeing Company
Inventor: Vijaykumar S. Ijeri , Om Prakash , Stephen P. Gaydos , Raghavan Subasri , Kalidindi Ramachandra Soma Raju , Dendi Sreenivas Reddy
IPC: C09D5/08 , C09D7/65 , C09D7/80 , C23C18/12 , C08K3/32 , C09D5/10 , C09D183/08 , C09D5/00 , C09D5/03 , C09D7/40 , C09D201/10 , C08K3/18 , C08K3/28
CPC classification number: C09D5/08 , C08K3/32 , C09D5/106 , C09D7/65 , C09D7/80 , C09D183/08 , C23C18/122 , C23C18/1216 , C23C18/1225 , C23C18/1254 , C08K3/18 , C08K3/28 , C08K2003/328 , C08K2201/011 , C09D5/002 , C09D5/038 , C09D7/67 , C09D201/10 , C23C2222/20
Abstract: A layered tetravalent metal phosphate composition (e.g., a layered zirconium phosphate composition) and a first corrosion inhibitor (e.g., cerium (III), a vanadate, a molybdate, a tungstate, a manganous, a manganate, a permanganate, an aluminate, a phosphonate, a thiazole, a triazole, and/or an imidazole) is dispersed in an aqueous solution and stirred to form a first solution. A precipitate of the first solution is collected and washed to form a first corrosion inhibiting material (CIM), which includes the first corrosion inhibitor intercalated in the layered tetravalent metal phosphate composition. The first CIM is added to a first sol-gel composition to form a first CIM-containing sol-gel composition. The first CIM-containing sol-gel composition is applied on a substrate to form a CIM-containing sol-gel layer, cured by UV radiation, and thermally cured to form a corrosion-resistant coating. One or more additional sol-gel composition may be applied on the substrate.
-
公开(公告)号:US11661666B2
公开(公告)日:2023-05-30
申请号:US16598306
申请日:2019-10-10
Applicant: THE BOEING COMPANY
Inventor: Vijaykumar S. Ijeri , Stephen P. Gaydos , Bidyut Kumar Manna , Dibyendu Chakraborty
Abstract: Electrolyte solutions for electrodeposition of zinc alloys and methods of electrodepositing zinc-iron alloys. An electrolyte solution for electroplating can include an alkali metal hydroxide, a zinc salt, a condensation polymer of epichlorohydrin, a quaternary amine, an aliphatic amine, a polyhydroxy alcohol, an aromatic organic acid and/or salts thereof, an amino alcohol, a bisphosphonic acid and/or salts thereof, an iron salt, an alkali metal gluconate, and an amine-based chelating agent. Electrodepositing zinc alloys on a substrate can include introducing a cathode and an anode into an electrolyte solution comprising an alkali metal hydroxide, a zinc salt, a condensation polymer of epichlorohydrin, a quaternary amine, an aliphatic amine, a polyhydroxy alcohol, an aromatic organic acid and/or salts thereof, an amino alcohol, a bisphosphonic acid and/or salts thereof, an iron salt, an alkali metal gluconate, and an amine-based chelating agent.
-
公开(公告)号:US20220056282A1
公开(公告)日:2022-02-24
申请号:US17453789
申请日:2021-11-05
Applicant: The Boeing Company
Inventor: Vijaykumar S. Ijeri , Stephen P. Gaydos , Patrick J. Kinlen , Priyanka G. Dhirde , Anand Khanna
IPC: C09D5/24 , C09D7/61 , C09D5/08 , C09D163/00 , H01B1/04
Abstract: An electrically conductive and corrosion resistant graphene-based coating composition, including a binder, high-pressure airless-sprayed expanded graphene stacks, carbon fibers, and a dispersing agent, wherein the graphene-based coating composition has an electrical conductivity of at least 2 S/cm and a pull-off adhesion of at least 2 MPa.
-
公开(公告)号:US11208731B2
公开(公告)日:2021-12-28
申请号:US15618850
申请日:2017-06-09
Applicant: The Boeing Company
Inventor: Vijaykumar S. Ijeri , Om Prakash , Stephen P. Gaydos , Nitin Pandurang Wasekar , Govindan Sundararajan , Dameracharla Srinivasa Rao
Abstract: An electrolyte solution for iron-tungsten plating is prepared by dissolving in an aqueous medium a divalent iron salt (e.g., iron (II) sulfate) and an alkali metal citrate (e.g., sodium citrate, potassium citrate, or other alkali metal citrate) to form a first solution, dissolving in the first solution a tungstate salt (e.g., sodium tungstate, potassium tungstate, or other potassium tungstate) to form a second solution, and dissolving in the second solution a citric acid to form the electrolyte solution. An iron-tungsten coating is formed on a substrate using the electrolyte solution by passing a current between a cathode and an anode through the electrolyte solution to deposit iron and tungsten on the substrate.
-
公开(公告)号:US20180022936A1
公开(公告)日:2018-01-25
申请号:US15231617
申请日:2016-08-08
Applicant: The Boeing Company
Inventor: Vijaykumar S. Ijeri , Om Prakash , Stephen P. Gaydos , Raghavan Subasri , Kalidindi Ramachandra Soma Raju , Dendi Sreenivas Reddy
CPC classification number: C09D5/086 , B05D3/0254 , B05D3/067 , B05D7/14 , B05D7/572 , B05D7/576 , B05D2202/25 , B05D2518/12 , C08G77/58 , C09D5/08 , C09D183/14 , C23C18/122 , C23C18/1225 , C23C18/1241 , C23C18/1254
Abstract: An alkoxysilane is contacted with water and an inorganic acid to form a first composition. A zirconium alkoxide is contacted with an organic acid to form a second composition. One or more alkoxysilanes and an organic acid are contacted with a mixture of the first and second compositions to form a sol-gel composition, to which a photoinitiator is added. The sol-gel composition has a ratio of a number of moles of silicon to a number of moles of zirconium (nSi/nZr) ranging from about 2 to about 10. The sol-gel composition is applied on a substrate (e.g., an aluminum alloy substrate) multiple times to form multiple sol-gel layers, and at least one of the sol-gel layers is cured by UV radiation. The multiple sol-gel layers are then thermally cured.
-
公开(公告)号:US20230357944A1
公开(公告)日:2023-11-09
申请号:US18344608
申请日:2023-06-29
Applicant: The Boeing Company
Inventor: Vijaykumar S. Ijeri , Om Prakash , Stephen P. Gaydos , Nitin Pandurang Wasekar , Govindan Sundararajan , Dameracharla Srinivasa Rao
Abstract: An electrolyte solution for iron-tungsten plating is prepared by dissolving in an aqueous medium a divalent iron salt (e.g., iron (II) sulfate) and an alkali metal citrate (e.g., sodium citrate, potassium citrate, or other alkali metal citrate) to form a first solution, dissolving in the first solution a tungstate salt (e.g., sodium tungstate, potassium tungstate, or other potassium tungstate) to form a second solution, and dissolving in the second solution a citric acid to form the electrolyte solution. An iron-tungsten coating is formed on a substrate using the electrolyte solution by passing a current between a cathode and an anode through the electrolyte solution to deposit iron and tungsten on the substrate.
-
公开(公告)号:US11661665B2
公开(公告)日:2023-05-30
申请号:US16863282
申请日:2020-04-30
Applicant: THE BOEING COMPANY
Inventor: Vijaykumar S. Ijeri , Om Prakash , Stephen P. Gaydos
Abstract: In certain aspects, a coated steel substrate comprises a single or multiple-layer electroplated aluminum coating over a steel substrate. The multiple-layer electroplated aluminum coating comprises one or more porous layers and one or more compact layers. The one or more porous layers comprise a material selected from a group consisting of aluminum and aluminum alloys. The one or more compact layers comprise a material selected from a group consisting of aluminum and aluminum alloys. In certain aspects, a method of depositing a multiple-layer aluminum coating over a steel substrate includes electroplating one or more porous aluminum layers over the steel substrate. The one or more porous aluminum layers comprise a material selected from a group consisting of aluminum and aluminum alloys. One or more compact aluminum layers are electroplated over the steel substrate. The one or more compact aluminum layers comprise a material selected from a group consisting of aluminum and aluminum alloys.
-
公开(公告)号:US11633940B2
公开(公告)日:2023-04-25
申请号:US17364954
申请日:2021-07-01
Applicant: THE BOEING COMPANY
Inventor: Stephen P. Gaydos , Vijaykumar S. Ijeri , Om Prakash , Shashi Kant Tiwari , Raghuvir Singh , Sharma Paswan , Lokesh C. Pathak
Abstract: The present disclosure provides electrolyte solutions for electrodeposition of zinc-manganese alloys, methods of forming electrolyte solutions, methods of electrodepositing zinc-manganese alloys, and multilayered zinc-manganese alloys. An electrolyte solution for electroplating can include a metal salt, boric acid, an alkali metal chloride, polyethylene glycol, and a hydroxy benzaldehyde. An electrolyte solution can be formed by dissolving a metal salt, boric acid, an alkali metal chloride, polyethylene glycol, and a hydroxy benzaldehyde in water or an aqueous solution. Electrodepositing zinc-manganese alloys on a substrate can include introducing a cathode and an anode into an electrolyte solution comprising a metal salt, boric acid, an alkali metal chloride, polyethylene glycol, and a hydroxy benzaldehyde. Electrodepositing can further include passing a current between the cathode and the anode through the electrolyte solution to deposit zinc and manganese onto the cathode.
-
公开(公告)号:US20220074066A1
公开(公告)日:2022-03-10
申请号:US17525308
申请日:2021-11-12
Applicant: The Boeing Company
Inventor: Vijaykumar S. Ijeri , Om Prakash , Stephen P. Gaydos , Nitin Pandurang Wasekar , Govindan Sundararajan , Dameracharla Srinivasa Rao
Abstract: An electrolyte solution for iron-tungsten plating is prepared by dissolving in an aqueous medium a divalent iron salt (e.g., iron (II) sulfate) and an alkali metal citrate (e.g., sodium citrate, potassium citrate, or other alkali metal citrate) to form a first solution, dissolving in the first solution a tungstate salt (e.g., sodium tungstate, potassium tungstate, or other potassium tungstate) to form a second solution, and dissolving in the second solution a citric acid to form the electrolyte solution. An iron-tungsten coating is formed on a substrate using the electrolyte solution by passing a current between a cathode and an anode through the electrolyte solution to deposit iron and tungsten on the substrate.
-
-
-
-
-
-
-
-
-