Abstract:
A method for producing a wheel disk of a vehicle wheel may involve producing the wheel disk produced from a steel blank by hot forming. The blank may be at least partially hardened, preferably press-hardened, during or after the hot forming. The blank may be hot formed using at least one punch and at least one die, and at least one opening may be introduced into the blank using hot trimming means. At least one opening may be introduced during the hot trimming using at least one trimming bolt and an application bolt, wherein the application bolt may have at least one region having a cross-sectional shape that is variable in a longitudinal direction of the application bolt. Using the application bolt, the at least one opening may be calibrated via the variable cross sectional shape.
Abstract:
One bumper system for a vehicle includes a bumper bracket and a deformation element connected to the bumper bracket. The bumper bracket is composed of a metallic workpiece with an undulating form such that the bumper bracket has at least one undulation trough and at least two undulation peaks, and reinforcement zones are formed in regions of the undulation trough. Another bumper system for a vehicle includes a bumper bracket and a deformation element connected to the bumper bracket. The bumper bracket has an undulating form such that the bumper bracket has a plurality of undulation troughs and a plurality of undulation peaks, and reinforcement zones are formed in each undulation trough. In each system, a second deformation element may be connected to the bumper bracket, and at least one characteristic of the reinforcement zones may increase or decrease between the deformation elements and a middle of the bumper bracket.
Abstract:
A device for absorbing energy in the event of a vehicle collision includes a body component of a motor vehicle, a thrust body for transmitting force, and a metal band for absorbing energy. The body component has a guide for the thrust body, and the body component has a deviating point for the deviating of the metal band. The thrust body has a fastening point for the fastening of the metal band. The metal band is coupled to the deviating point of the body component and to the fastening point of the thrust body such that the metal band is subjected to a tensile load when the thrust body is pushed into the guide of the body component. A distance between the deviating point and the fastening point is selectively adjustable.
Abstract:
A device for absorbing energy in the event of a vehicle collision includes a body component of a motor vehicle, a thrust body for transmitting force, and a metal band for absorbing energy. The body component has a guide for the thrust body, and the body component has a deviating point for the deviating of the metal band. The thrust body has a fastening point for the fastening of the metal band. The metal band is coupled to the deviating point of the body component and to the fastening point of the thrust body such that the metal band is subjected to a tensile load when the thrust body is pushed into the guide of the body component. A distance between the deviating point and the fastening point is selectively adjustable.
Abstract:
The invention relates to a spring strut top mounting, comprising at least one shaping base body, wherein the at least one shaping base body has a dome-shaped section in the region connecting to the spring strut and at least one separate, local reinforcement element which is connected to the base body. The object of making available a spring strut top mounting which has improved rigidity, in particular improved local rigidity, is achieved according to the invention in that the base body has at least one stamped region in the region connecting to the spring strut, and the at least one reinforcement element lays against the base body at least in the vicinity of the at least one stamped region.
Abstract:
A vehicle wheel for motor vehicles may include a wheel-rim ring with an opening, a main member positioned at least partially in the opening of the wheel-rim ring, and a covering shell for at least partially covering the main member. The main member may include an attachment region with receptacles for attaching the main member and the wheel-rim ring to a vehicle. The wheel is configured to have a low weight and an adequate stiffness. Moreover, the wheel also exhibits a secure attachment and no pre-load losses while permitting a high degree of design flexibility. In some examples, the attachment region of the main member is free from the covering shell by way of, for example, a cut-out in the covering shell.
Abstract:
Spring strut domes for use with vehicle bodies can be formed by reshaping a semifinished product into a dome element by way of massive forming. In particular, the semifinished product may be reshaped by rolling, forging, upset-forging, and/or pressing. In this process, structures may be introduced into the dome element that increase the stiffness of the dome element and hence the spring strut dome. Two example structures include ribs and webs, and the dome element may be formed of steel or a steel alloy. In some cases, the semifinished product may be heated before being reshaped into the dome element. Further, the spring strut dome may also include an attaching region coupled to the dome element, which may be used to secure the spring strut dome to a vehicle body. A wall thickness of the attaching region may be equal to or less than 1.5 mm in some examples.
Abstract:
The invention relates to a spring strut top mounting, comprising at least one shaping base body, wherein the at least one shaping base body has a dome-shaped section in the region connecting to the spring strut and at least one separate, local reinforcement element which is connected to the base body. The object of making available a spring strut top mounting which has improved rigidity, in particular improved local rigidity, is achieved according to the invention in that the base body has at least one stamped region in the region connecting to the spring strut, and the at least one reinforcement element lays against the base body at least in the vicinity of the at least one stamped region.
Abstract:
The invention relates to a bumper for a motor vehicle, in particular a front bumper, having at least two deformation bodies which are at a distance from one another and of which the center or longitudinal axes, in the mounted state, are oriented substantially parallel to the direction of travel of the motor vehicle, and having a plurality of crossmembers which have a closed profile and which are arranged one above the other and are connected to the deformation bodies. The crossmembers are formed from a group of at least three crossmembers, wherein the respective crossmember of the group has a cross-sectional profile which comprises at least five corners.
Abstract:
One bumper system for a vehicle includes a bumper bracket and a deformation element connected to the bumper bracket. The bumper bracket is composed of a metallic workpiece with an undulating form such that the bumper bracket has at least one undulation trough and at least two undulation peaks, and reinforcement zones are formed in regions of the undulation trough. Another bumper system for a vehicle includes a bumper bracket and a deformation element connected to the bumper bracket. The bumper bracket has an undulating form such that the bumper bracket has a plurality of undulation troughs and a plurality of undulation peaks, and reinforcement zones are formed in each undulation trough. In each system, a second deformation element may be connected to the bumper bracket, and at least one characteristic of the reinforcement zones may increase or decrease between the deformation elements and a middle of the bumper bracket.