Abstract:
A thermoelectric conversion module package includes: a thermoelectric conversion module including a first and a second substrate opposed to each other, a plurality of thermoelectric elements arranged between the first and second substrates, and a first and a second lead wire drawn out from one of the first and second substrates; and a package including a first metal foil covering the first substrate of the thermoelectric conversion module, a second metal foil covering the second substrate of the thermoelectric conversion module, a resin portion hermetically connecting the first metal foil and the second metal foil along an outer edge portion of the thermoelectric conversion module, and an insertion portion for hermetically passing the first and second lead wires through the resin portion.
Abstract:
A lithium-ion battery outer package material includes a base layer, a first adhesive layer, a metallic foil layer, a corrosion prevention treatment layer, a second adhesive layer, and a sealant layer sequentially layered on one of the surfaces of the base layer. When a tensile test is performed in a 23° C. and 40% RH environment, with the specimen width being 15 mm, the distance between gauge points being 50 mm, and the tensile speed being 100 mm/min, the tensile elongation and tensile stress of the specimen are measured. A ratio of tensile elongation measured in a first direction to tensile elongation measured in a second direction is from 135:85 to 140:75, and a ratio of tensile stress measured in the first direction to tensile stress measured in the second direction is from 195:225 to 200:229.
Abstract:
A packaging material for a lithium ion battery includes: a base material layer that is formed from a film obtained by biaxially stretching a multi-layered coextruded film including a first thermoplastic resin layer having rigidity and chemical resistance and being disposed at an outer side thereof, a second thermoplastic resin layer having a capability of propagating stress and adhesiveness, and a third thermoplastic resin layer having toughness; a metal foil layer that is laminated on one surface of the base material layer; an anti-corrosion-treated layer that is laminated on the metal foil layer; an inner adhesive layer that is laminated on the anti-corrosion-treated layer; and a sealant layer that is laminated on the inner adhesive layer.
Abstract:
A packaging material for electrical storage devices which includes a base layer, a metal foil layer arranged on the base layer, and a sealant layer arranged on the metal foil layer. In the packaging material for electrical storage devices, the base layer includes at least one of a stretched polyester resin and a stretched polyamide resin, and the metal foil layer is an aluminum foil containing iron in the range of about 0.5 mass % or more to about 5.0 mass % or less. The packaging material has a tensile elongation of about 50% or more both the MD and TD directions of the base layer.
Abstract:
A lithium-ion battery outer package material, provided with: a base layer, and a first adhesive layer, a metallic foil layer, a corrosion prevention treatment layer, a second adhesive layer, and a sealant layer sequentially layered on one of the surfaces of the base layer. When a tensile test (a sample of the substrate layer is stored for 24 hours in a 23° C. and 40% RH environment; a tensile test is subsequently performed in a 23° C. and 40% RH environment with the specimen width being 15 mm, the distance between gauge points being 50 mm, and the tensile speed being 100 mm/min; and the tensile elongation and tensile stress of the specimen are measured) is performed, the tensile elongation in a first direction, which is either the TD direction or the MD direction of the sample, relative to the length of the sample is from about not less than 50% to less than 80%, and the tensile stress in a second direction, which is perpendicular to the first direction, is from about not less than 150 to 230 MPa.
Abstract:
A power storage device packaging material includes: a base material layer; a metal foil layer formed on one surface of the base material layer via an adhesive layer; and a sealant layer arranged on a surface of the metal foil layer, the surface of the metal foil layer being on the opposite side to the base material layer, wherein the base material layer contains a polyester resin that contains a polyester elastomer and/or an amorphous polyester.
Abstract:
A packaging material for lithium-ion battery comprises a substrate layer made of a plastic film, and a first adhesive layer, a metal foil layer, an anti-corrosion layer, a second adhesive layer and a sealant layer successively laminated on one surface of the substrate layer. The plastic film has a water absorption rate of not less than about 01% to not larger than about 3% when determined by a method described in JIS K 7209:2000 and when the plastic film is subjected to a tensile test (wherein the sample of the plastic film is stored for 24 hours in an environment of 23° C. and 40% R.H., and subjected to a tensile test in the same environment as indicated above under conditions of a sample width of 6 mm, a gauge length of 35 mm and a tensile speed of 300 mm/minute), stress values in an MD direction of the sample and in a TD direction of the sample after stretching by about 10% relative to a length of the sample prior to the tensile test are both from not larger than about 110 MPa and at least one of the stress values in the MD direction of the sample and in the TD direction of the sample is not less than about 70 MPa.
Abstract:
A packaging material for lithium-ion battery comprises a substrate layer made of a plastic film, and a first adhesive layer, a metal foil layer, an anti-corrosion layer, a second adhesive layer and a sealant layer successively laminated on one surface of the substrate layer. The plastic film has a water absorption rate of not less than about 01% to not larger than about 3% when determined by a method described in JIS K 7209:2000 and when the plastic film is subjected to a tensile test (wherein the sample of the plastic film is stored for 24 hours in an environment of 23° C. and 40% R.H., and subjected to a tensile test in the same environment as indicated above under conditions of a sample width of 6 mm, a gauge length of 35 mm and a tensile speed of 300 mm/minute), stress values in an MD direction of the sample and in a TD direction of the sample after stretching by about 10% relative to a length of the sample prior to the tensile test are both from not larger than about 110 MPa and at least one of the stress values in the MD direction of the sample and in the TD direction of the sample is not less than about 70 MPa.
Abstract:
A packaging material for a lithium ion battery includes at least a first adhesive layer, a metal foil layer, a corrosion prevention-treated layer, a second adhesive layer, and a sealant layer which are sequentially laminated on one surface of a base material layer. The thickness of the base material layer is 15 to 40 μm.
Abstract:
A packaging material for a lithium ion battery includes: a base material layer that is formed from a film obtained by biaxially stretching a multi-layered coextruded film including a first thermoplastic resin layer having rigidity and chemical resistance and being disposed at an outer side thereof, a second thermoplastic resin layer having a capability of propagating stress and adhesiveness, and a third thermoplastic resin layer having toughness; a metal foil layer that is laminated on one surface of the base material layer; an anti-corrosion-treated layer that is laminated on the metal foil layer; an inner adhesive layer that is laminated on the anti-corrosion-treated layer; and a sealant layer that is laminated on the inner adhesive layer.