Abstract:
[Object] To provide a surface treated steel foil for a current collector, the surface treated steel foil having suitable hydrogen barrier properties. [Solving Means] A surface treated steel foil for a current collector, the surface treated steel foil having a first surface and a second surface located on a side opposite to the first surface, includes a base material formed of a steel and an iron-nickel alloy layer that is laminated on the base material on the first surface side and/or the second surface side. The iron-nickel alloy layer contains Fe1Ni1 as an alloy phase. With respect to the surface including the alloy layer, the ratio of the maximum value of diffraction intensity of a Fe1Ni1 (311) plane and the maximum value of diffraction intensity of a Fe(211) plane in X-ray diffraction satisfies the following formula (1):
Abstract:
It is an object of the present invention to provide an electrolytic iron foil and a battery current collector in which the risk of breakage or tearing during manufacture caused by reduction in film thickness can be suppressed and which have thinness as well as strength and elongation sufficient for withstanding repeated charging and discharging in a secondary battery. An electrolytic iron foil in which, in at least either one surface, a crystallite diameter on (110) plane of iron is equal to or more than 45 nm and the electrolytic iron foil is less than 20 μm in thickness.
Abstract:
[Object] To provide a current collector for battery, having a strength sufficient to suppress breakage and tears during production feared in association with thinning, and a battery having the current collector. [Solving Means] The current collector for battery according to the present invention has at least a first metal layer containing at least a metal selected from Cu, Fe, and Ni, and a second metal layer laminated on the first metal layer and containing at least a metal selected from Cu, Fe, and Ni other than the metal of the first metal layer. One of the first metal layer and the second metal layer contains the Ni, and a laminate interface between the first metal layer and the second metal layer has a roughness Ra≥0.12.
Abstract:
[Problem] To provide a laminated electrolytic foil having strength sufficient to successfully suppress tearing or ripping during manufacture, the tearing or ripping being concerned accompanying with a trend toward thinner structures in battery current collectors, and improved in handling properties during the manufacture, and also a battery using the laminated electrolytic foil. [Solution] A laminated electrolytic foil includes a first metal layer formed from Cu and a second metal layer formed from Ni or an Ni alloy, in which the first metal layer and the second metal layer are laminated together. The laminated electrolytic foil has an overall layer thickness, which is the thickness of the laminated electrolytic foil as a whole, of 3 to 15 μm and tensile strength of 700 MPa or higher.
Abstract:
The present invention provides steel foil for battery containers, the steel foil being characterized in that the maximum value of the maximum principal strain in uniaxial deformation is not less than 0.25 and the maximum value of the maximum principal strain in planar strain deformation is not less than 0.1. The present invention is able to provide steel foil for battery containers that is capable of restraining cracking of a base material when subjected to a severe forming process for battery containers.
Abstract:
A surface-treated steel sheet for a battery container includes a steel sheet, an iron-nickel diffusion layer formed on the steel sheet, and a nickel layer formed on the iron-nickel diffusion layer and constituting the outermost layer. When the Fe intensity and the Ni intensity are continuously measured from the surface of the surface-treated steel sheet for a battery container along the depth direction with a high frequency glow discharge optical emission spectrometric analyzer, the thickness of the iron-nickel diffusion layer being the difference (D2−D1) between the depth (D1) at which the Fe intensity exhibits a first predetermined value and the depth (D2) at which the Ni intensity exhibits a second predetermined value is 0.04 to 0.31 μm; and the total amount of the nickel contained in the iron-nickel diffusion layer and the nickel contained in the nickel layer is 10.8 to 26.7 g/m2.
Abstract:
There is provided a roughened nickel-plated sheet having a roughened nickel layer as an outermost surface layer on at least one surface of a metal base material, wherein the brightness L* of the surface of the roughened nickel layer is 30 to 50, the glossiness of 85° of the surface of the roughened nickel layer is 1.5 to 50.
Abstract:
A surface-treated steel sheet, including: a steel sheet; and a nickel-cobalt-iron diffusion layer formed as an outermost surface layer on the steel sheet. When a content of Ni, a content of Co and a content of Fe of the nickel-cobalt-iron diffusion layer are determined based on a Ni intensity, a Co intensity and a Fe intensity each sequentially measured in the depth direction from the surface side of the nickel-cobalt-iron diffusion layer by a radio frequency glow discharge optical emission spectrometry, a content of Co at a specific depth position D, InCo_D, is 5% by mass or higher and a content of Fe at the specific depth position D, InFe_D, is 11% by mass or higher, the specific depth position D being a position where the Ni intensity is 0.5% of the maximum value of the Ni intensity. Also disclosed is a method for manufacturing the surface-treated steel sheet.
Abstract:
There is provided a surface-treated steel sheet for battery containers. The surface-treated sheet is used to form a battery container for a battery. The battery uses a nonaqueous electrolytic solution as an electrolytic solution. The surface-treated steel sheet is characterized by the features as below. The surface-treated steel sheet includes a base material made of steel and an iron-nickel diffusion layer formed by performing thermal diffusion treatment after forming a nickel plating layer at least on a surface of the base material to be located at the inner surface side of the battery container. The iron-nickel diffusion layer has an outermost layer of which a ratio of Ni and Fe is 7.5 or less as a molar ratio of Ni/Fe. The iron-nickel diffusion layer has a thickness of 0.6 μm or more.
Abstract:
A roughened nickel-plated sheet including a roughened nickel layer on at least one surface of a metal substrate as the outermost layer thereof, the roughened nickel layer being formed of a plurality of nickel protrusions. When the structure of the roughened nickel-plated sheet is observed at height positions with a focused ion beam scanning electron microscope (FIB-SEM), the absolute value of the change rate of the nickel occupancy is equal to or less than a predetermined value, and the nickel occupancy and the number of nickel protrusions present at a height position located 2.0 μm from the base position of the roughened nickel layer toward the surface in the height direction are equal to or more than predetermined values, respectively.