摘要:
A structure for a multi-level interconnect inter-level dielectric layer (ILD), a method of manufacturing thereof, and a semiconductor device including the ILD layer. The ILD layer includes a first low-dielectric constant material sub-layer, and a second low-dielectric constant material sub-layer disposed over the first low-dielectric constant material sub-layer. The second low-dielectric constant material sub-layer has at least one different material property than the first low-dielectric constant material sub-layer. A third low-dielectric constant material sub-layer is disposed over the second low-dielectric constant material sub-layer, the third low-dielectric constant material sub-layer having at least one different material property than the second low-dielectric constant material sub-layer. The first, second and third low-dielectric constant materials sub-layers are preferably comprised of the same material, deposited continuously in one or more deposition chambers while the deposition conditions such as the gas flow rate, power, or gas species are adjusted or changed.
摘要:
A structure for a multi-level interconnect inter-level dielectric layer (ILD), a method of manufacturing thereof, and a semiconductor device including the ILD layer. The ILD layer includes a first low-dielectric constant material sub-layer, and a second low-dielectric constant material sub-layer disposed over the first low-dielectric constant material sub-layer. The second low-dielectric constant material sub-layer has at least one different material property than the first low-dielectric constant material sub-layer. A third low-dielectric constant material sub-layer is disposed over the second low-dielectric constant material sub-layer, the third low-dielectric constant material sub-layer having at least one different material property than the second low-dielectric constant material sub-layer. The first, second and third low-dielectric constant materials sub-layers are preferably comprised of the same material, deposited continuously in one or more deposition chambers while the deposition conditions such as the gas flow rate, power, or gas species are adjusted or changed.
摘要:
A new method is provided for the creation of dummy plugs in support of creating a robust structure of overlying interconnect traces. A pattern of holes for dummy plugs is etched stopping at an etch stop layer, the etch stop layer is then removed from the bottom of the holes that have been created whereby this removal is extended into an underlying layer of insulating material. The pattern of holes is filled with a metal, preferably copper, excess metal is removed by methods of Chemical Mechanical Polishing, leaving in place a pattern of metal plugs that penetrate through layers of insulation material and through layers of etch stop material and into an underlying layer of semiconductor material.
摘要:
A bilayer porous low dielectric constant (low-k) interconnect structure and methods of fabricating the same are presented. A preferred embodiment having an effective dielectric constant of about 2.2 comprises a bottom deposited dielectric layer and a top deposited dielectric layer in direct contact with the former. The bottom layer and the top layer have same atomic compositions, but a higher dielectric constant value k. The bottom dielectric layer serves as an etch stop layer for the top dielectric layer, and the top dielectric layer can act as CMP stop layer. One embodiment of making the structure includes forming a bottom dielectric layer having a first porogen content and a top dielectric layer having a higher porogen content. A curing process leaves lower pore density in the bottom dielectric layer than that left in the top dielectric layer, which leads to higher dielectric value k in the bottom dielectric layer.
摘要:
The present invention provides a method of forming a semiconductor structure having an ultra low-K dielectric material that adheres well to the substrate. The method includes depositing a low-K material on the top surface of a substrate at a low temperature of no more than 250° by a CVD or spin-on process. The dielectric material is then cured by placing the substrate with the dielectric film in an environment where the temperature is regulated at about 400° or less as the dielectric film is being subjected to a plasma treatment or an E-beam treatment or UV treatment. The environment may further include one or more gases or a mixture of gases selected from the group consisting of H2, N2, NH3, CO2, all hydride gases and a mixture of these gases.
摘要:
A semiconductor device with improved resistance to delamination and method for forming the same the method including providing a semiconductor wafer comprising a metallization layer with an uppermost etch stop layer; forming at least one adhesion promoting layer on the etch stop layer; and, forming an inter-metal dielectric (IMD) layer on the at least one adhesion promoting layer.
摘要:
A bilayer porous low dielectric constant (low-k) interconnect structure and methods of fabricating the same are presented. A preferred embodiment having an effective dielectric constant of about 2.2 comprises a bottom deposited dielectric layer and a top deposited dielectric layer in direct contact with the former. The bottom layer and the top layer have same atomic compositions, but a higher dielectric constant value k. The bottom dielectric layer serves as an etch stop layer for the top dielectric layer, and the top dielectric layer can act as CMP stop layer. One embodiment of making the structure includes forming a bottom dielectric layer having a first porogen content and a top dielectric layer having a higher porogen content. A curing process leaves lower pore density in the bottom dielectric layer than that left in the top dielectric layer, which leads to higher dielectric value k in the bottom dielectric layer.
摘要:
A semiconductor device with improved resistance to delamination and method for forming the same the method including providing a semiconductor wafer comprising a metallization layer with an uppermost etch stop layer; forming at least one adhesion promoting layer on the etch stop layer; and, forming an inter-metal dielectric (IMD) layer on the at least one adhesion promoting layer.
摘要:
A method for forming a protective oxide liner to reduce a surface reflectance including providing a hydrophilic insulating layer over a conductive layer; providing an anti-reflectance coating (ARC) layer over the hydrophilic insulating layer; providing an etching stop layer over the anti-reflectance coating (ARC) layer; photolithographically defining a pattern on a surface of the etching stop layer for etching; anisotropically etching at least one etch opening extending at least partially through a thickness of the hydrophilic insulating layer; depositing an oxide liner such that the sidewalls and bottom portion of the at least one etch opening and said surface are covered by the oxide liner; and, removing the oxide liner from aid surface according to a chemical mechanical (CMP) process to a surface reflectance.
摘要:
A semiconductor structure having a novel cap layer on a low-k dielectric layer and a method for forming the same are provided. The cap layer preferably includes a material selected from the group consisting essentially of CNx, SiCN, SiCO, SiC, and combinations thereof. The semiconductor structure further includes a via in the low-k dielectric layer, and a metal line in the low-k dielectric layer and on the via. An etch stop layer is preferably formed on the cap layer.
摘要翻译:提供了在低k电介质层上具有新颖的盖层的半导体结构及其形成方法。 盖层优选地包括选自基本上由CN x Si,SiCN,SiCO,SiC及其组合组成的组的材料。 半导体结构还包括低k电介质层中的通孔和低k介电层中的金属线和通孔。 蚀刻停止层优选形成在盖层上。