摘要:
A semiconductor device with improved resistance to delamination and method for forming the same the method including providing a semiconductor wafer comprising a metallization layer with an uppermost etch stop layer; forming at least one adhesion promoting layer on the etch stop layer; and, forming an inter-metal dielectric (IMD) layer on the at least one adhesion promoting layer.
摘要:
A semiconductor device with improved resistance to delamination and method for forming the same the method including providing a semiconductor wafer comprising a metallization layer with an uppermost etch stop layer; forming at least one adhesion promoting layer on the etch stop layer; and, forming an inter-metal dielectric (IMD) layer on the at least one adhesion promoting layer.
摘要:
A method for manufacturing an integrated circuit is provided. In one example, the method includes forming a substantially nitrogen-free silicon carbide layer over a substrate using a methyl silicate gas.
摘要:
The present invention provides for a heterogeneous low k dielectric comprising a main layer and a sub-layer. The main layer comprises a first low k dielectric material with a first low k dielectric constant and the sub-layer comprises a second low k dielectric material with a second low k dielectric constant. The sub-layer directly adjoins the main layer, and the second low k dielectric constant is greater than the first low k dielectric constant by more than 0.1.
摘要:
The present invention provides a method of forming a semiconductor structure having an ultra low-K dielectric material that adheres well to the substrate. The method includes depositing a low-K material on the top surface of a substrate at a low temperature of no more than 250° by a CVD or spin-on process. The dielectric material is then cured by placing the substrate with the dielectric film in an environment where the temperature is regulated at about 400° or less as the dielectric film is being subjected to a plasma treatment or an E-beam treatment or UV treatment. The environment may further include one or more gases or a mixture of gases selected from the group consisting of H2, N2, NH3, CO2, all hydride gases and a mixture of these gases.
摘要:
A method of protecting a low k dielectric layer that is preferably comprised of a material containing Si, O, C, and H is described. The dielectric layer is subjected to a gas plasma that is generated from a CXHY gas which is preferably ethylene. Optionally, hydrogen may be added to the CXHY gas. Another alternative is a two step plasma process involving a first plasma treatment of CXHY or CXHY combined with H2 and a second plasma treatment with H2. The modified dielectric layer provides improved adhesion to anti-reflective layers and to a barrier metal layer in a damascene process. The modified dielectric layer also has a low CMP rate that prevents scratch defects and an oxide recess from occurring next to the metal layer on the surface of the damascene stack. The plasma treatments are preferably done in the same chamber in which the dielectric layer is deposited.
摘要翻译:描述了保护低k电介质层的方法,其优选由含有Si,O,C和H的材料组成。 对电介质层进行气化等离子体,该等离子体是由优选乙烯的C X H Y气产生的。 任选地,可以将氢气加入到C 1 H 2 H 2 O气体中。 另一种替代方案是涉及第一等离子体处理C X> Y Y or SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB >与H 2 H 2结合,并且与H 2 2进行第二等离子体处理。 改进的介电层在镶嵌工艺中提供对抗反射层和阻挡金属层的改善的粘合性。 改进的介电层也具有低CMP速率,其防止划痕缺陷和氧化物凹陷在镶嵌层的表面上邻近金属层发生。 等离子体处理优选在沉积介电层的相同的室中进行。
摘要:
A method for forming a dielectric insulating layer with a reduced dielectric constant and increased hardness for semiconductor device manufacturing including providing a semiconductor wafer having a process surface for forming a dielectric insulting layer thereover; depositing according to a CVD process a carbon doped oxide layer the CVD process including an oregano-silane precursor having Si—O groups and Si—Ry groups, where R is an alkyl or cyclo-alkyl group and y the number of R groups bonded to Si; and, exposing the carbon doped oxide layer to a hydrogen plasma treatment for a period of time thereby reducing the carbon doped oxide layer thickness including reducing the carbon doped oxide layer dielectric constant and increasing the carbon doped oxide layer hardness.
摘要:
A method of forming a low-k dielectric material layer comprising the following steps. A first dielectric material sub-layer is formed over a substrate. The first dielectric material sub-layer is treated with an energy treatment to form a hardened layer on the upper surface of the first dielectric material sub-layer. A second dielectric material sub-layer is formed over the hardened layer, wherein the first dielectric sub-layer, the hardened layer and the second dielectric sub-layer comprise the low-k dielectric material layer. And a dual damascene structure and a dielectric material structure formed thereby.
摘要:
In accordance with the objectives of the invention a new method is provided for improving adhesion strength that is deposited over the surface of a layer of copper. Conventional etch stop layers of for instance dichlorosilane (SiCl2H2) or SiOC have poor adhesion with an underlying layer of copper due to poor molecular binding between the interfacing layers. The surface of the deposited layer of copper can be provided with a special enhanced interface layer by using a method provided by the invention. That is pre-heat of the copper layer followed by a pre-cleaning treatment with ammonia (NH3) and N2, followed by forming an adhesive enhanced layer over the copper layer by treatment with N2 or O2 or N2 with alkyl-silane or alkyl silane.
摘要:
A method of forming a low-k dielectric material layer comprising the following steps. A first dielectric material sub-layer is formed over a substrate. The first dielectric material sub-layer is treated with an energy treatment to form a hardened layer on the upper surface of the first dielectric material sub-layer. A second dielectric material sub-layer is formed over the hardened layer, wherein the first dielectric sub-layer, the hardened layer and the second dielectric sub-layer comprise the low-k dielectric material layer. And a dual damascene structure and a dielectric material structure formed thereby.