Abstract:
The disclosed write assist circuit can include a control circuit and a voltage generator. The control circuit can be configured to receive memory address information associated with a memory write operation for memory cells. The voltage generator can be configured to provide a reference voltage to one or more bitlines coupled to the memory cells. The voltage generator can include two capacitive elements, where during the memory write operation, (i) one of the capacitive elements can be configured to couple the reference voltage to a first negative voltage, and (ii) based on the memory address information, both capacitive elements can be configured to cumulatively couple the reference voltage to a second negative voltage that is lower than the first negative voltage.
Abstract:
A cell structure is disclosed. The cell structure includes a first unit comprising a first group of transistors and a first data latch, a second unit comprising a second group of transistors and a second data latch a read port unit comprising a plurality of p-type transistors, a search line and a complementary search line, the search line and the complementary search line function as input of the cell structure, and a master line, the master line functions as an output of the cell structure, the first unit is coupled to the second unit, both the first and the second units are coupled to the read port unit. According to some embodiments, the first data latch comprises a first and a second p-type transistors, a first and a second n-type transistors.
Abstract:
A semiconductor chip is provided. The semiconductor chip includes a memory cell and a logic cell disposed aside the memory cell, and includes signal and ground lines with the memory and logic cells located therebetween. The memory cell includes first and second active structures extending along a first direction, and includes a storage transmission gate line, first through third gate lines and a read transmission gate line extending along a second direction. The storage transmission gate line includes first and second line segments, which respectively extends across the active structures. The first through third gate lines continuously extend across the first and second active structures. The read transmission gate line includes third and fourth line segments, which respectively extend across the active structures. The first through third gate lines are located between the storage and read transmission gate lines.
Abstract:
A device is disclosed that includes a plurality of first memory cells, a plurality of second memory cells, a power circuit, and a header circuit. The power circuit is configured to provide the first power voltage for the plurality of first memory cells, and to provide the second power voltage, that is independent from the first power voltage, for the plurality of second memory cells. The header circuit is configured to provide, during the write operation, the first voltage smaller than the first power voltage, the second power voltage, or smaller than the first power voltage and the second power voltage, for corresponding memory cells of the plurality of first memory cells and the plurality of second memory cells.
Abstract:
An apparatus and method of three dimensional conductive lines comprising a first memory column segment in a first tier, a second memory column segment in a second tier, and conductive lines connecting the first memory column segment to the second memory column segment. In some embodiments a conductive line is disposed in the first tier on a first side of the memory column and in the second tier on a second side of the memory column.
Abstract:
Some aspects of the present disclosure a method. In this method, a wordline voltage is provided to a wordline, which is coupled to a plurality of memory cells. A boost enable signal is provided. The state of the boost enable signal is indicative of whether the wordline voltage at a predetermined position on the wordline has reached a non-zero, predetermined wordline voltage. The wordline voltage is selectively boosted to a boosted wordline voltage level based on the boost enable signal.
Abstract:
A memory device is disclosed. The memory device includes a first program line and a second program line. A first portion of the first program line is formed in a first conductive layer, and a second portion of the first program line is formed in a second conductive layer above the first conductive layer. A first portion of the second program line is formed in the first conductive layer, and a second portion of the second program line is formed in a third conductive layer above the second conductive layer. A width of at least one of the second portion of the first program line or the second portion of the second program line is different from a width of at least one of the first portion of the first program line or the first portion of the second program line. A method is also disclosed herein.
Abstract:
An apparatus and method of three dimensional conductive lines comprising a first memory column segment in a first tier, a second memory column segment in a second tier, and conductive lines connecting the first memory column segment to the second memory column segment. In some embodiments a conductive line is disposed in the first tier on a first side of the memory column and in the second tier on a second side of the memory column.
Abstract:
An apparatus and method of three dimensional conductive lines comprising a first memory column segment in a first tier, a second memory column segment in a second tier, and conductive lines connecting the first memory column segment to the second memory column segment. In some embodiments a conductive line is disposed in the first tier on a first side of the memory column and in the second tier on a second side of the memory column.
Abstract:
An apparatus and method of three dimensional conductive lines comprising a first memory column segment in a first tier, a second memory column segment in a second tier, and conductive lines connecting the first memory column segment to the second memory column segment. In some embodiments a conductive line is disposed in the first tier on a first side of the memory column and in the second tier on a second side of the memory column.