Abstract:
Some embodiments of the present disclosure relate to a method to increase breakdown voltage of a power device. A power device is formed on a silicon-on-insulator (SOI) wafer made up of a device wafer, a handle wafer, and an intermediate oxide layer. A recess is formed in a lower surface of the handle wafer to define a recessed region of the handle wafer. The recessed region of the handle wafer has a first handle wafer thickness, which is greater than zero. An un-recessed region of the handle wafer has a second handle wafer thickness, which is greater than the first handle wafer thickness. The first handle wafer thickness of the recessed region provides a breakdown voltage improvement for the power device.
Abstract:
The present disclosure relates to a method and apparatus to increase breakdown voltage of a semiconductor power device. A bonded wafer is formed by bonding a device wafer to a handle wafer with an intermediate oxide layer. The device wafer is thinned substantially from its original thickness. A power device is formed within the device wafer through a semiconductor fabrication process. The handle wafer is patterned to remove section of the handle wafer below the power device, resulting in a breakdown voltage improvement for the power device as well as a uniform electrostatic potential under reverse biasing conditions of the power device, wherein the breakdown voltage is determined. Other methods and structures are also disclosed.
Abstract:
Various examples of conductor features in integrated circuit layouts are disclosed herein. In an example, a method includes initializing a layout for fabricating an integrated circuit. A plurality of fill cells is inserted into the layout. The plurality of fill cells includes a plurality of fill line shapes that correspond to conductive lines of the integrated circuit. Thereafter, a design is inserted into the layout that includes a plurality of functional shapes. A conflicting subset of the plurality of fill line shapes of the plurality of fill cells that conflict with the plurality functional shapes are removed. The layout that includes the plurality of fill cells and the design is provided for fabricating the integrated circuit.
Abstract:
Some embodiments of the present disclosure relate to a method to increase breakdown voltage of a power device. A power device is formed on a silicon-on-insulator (SOI) wafer made up of a device wafer, a handle wafer, and an intermediate oxide layer. A recess is formed in a lower surface of the handle wafer to define a recessed region of the handle wafer. The recessed region of the handle wafer has a first handle wafer thickness, which is greater than zero. An un-recessed region of the handle wafer has a second handle wafer thickness, which is greater than the first handle wafer thickness. The first handle wafer thickness of the recessed region provides a breakdown voltage improvement for the power device.
Abstract:
Some embodiments relate to a method of designing an integrated circuit layout. In this method, a plurality of design shapes are provided on different design layers over an active area within a graphical representation of the layout. A connection extends perpendicularly between a first design shape formed on a first design layer and a second design shape formed on the first design layer. First and second cut mask shapes on first and second cut mask design layers, respectively, are generated. The first cut shape removes portions of the first design layer and the second cut shape removes portions of the second design layer.
Abstract:
The present disclosure relates to a method and apparatus to increase breakdown voltage of a semiconductor power device. A bonded wafer is formed by bonding a device wafer to a handle wafer with an intermediate oxide layer. The device wafer is thinned substantially from its original thickness. A power device is formed within the device wafer through a semiconductor fabrication process. The handle wafer is patterned to remove section of the handle wafer below the power device, resulting in a breakdown voltage improvement for the power device as well as a uniform electrostatic potential under reverse biasing conditions of the power device, wherein the breakdown voltage is determined. Other methods and structures are also disclosed.
Abstract:
Various examples of conductor features in integrated circuit layouts are disclosed herein. In an example, a method includes receiving an integrated circuit layout, inserting, into the integrated circuit layout, a design containing a first set of Front-End Of Line (FEOL) shapes of an integrated circuit and a first set of Back-End Of Line (BEOL) shapes of the integrated circuit, inserting, into the integrated circuit layout, a set of cells containing a second set of FEOL shapes of the integrated circuit and a second set of BEOL shapes of the integrated circuit, removing a subset of the second set of BEOL shapes that conflict with the design, and providing the integrated circuit layout that includes the design and the set of cells for fabrication of the integrated circuit. The second set of FEOL shapes includes contact shapes that define contacts of the integrated circuit.
Abstract:
Various examples of conductor features in integrated circuit layouts are disclosed herein. In an example, a method includes initializing a layout for fabricating an integrated circuit. A plurality of fill cells is inserted into the layout. The plurality of fill cells includes a plurality of fill line shapes that correspond to conductive lines of the integrated circuit. Thereafter, a design is inserted into the layout that includes a plurality of functional shapes. A conflicting subset of the plurality of fill line shapes of the plurality of fill cells that conflict with the plurality functional shapes are removed. The layout that includes the plurality of fill cells and the design is provided for fabricating the integrated circuit.
Abstract:
Some embodiments relate to a method of hierarchical layout design, comprising forming a layout of an integrated circuit (IC) according to a design rule that specifies a minimum design rule distance between a neighboring layout features within the IC. Forming the layout comprises forming first and second standard cells having first and second layout features, respectively, that about one-another so that a distance between the first and second layout features is less than the minimum design rule distance. The method further comprises configuring design rule checking (DRC) to ignore this fail. Instead, the layout is modified with an automated layout tool by merging the first and second layout features, or by removing a portion of the first or second layout feature to increase the distance between the first and second layout features to be greater than or equal to the minimum distance.
Abstract:
Some embodiments relate to a method of designing an integrated circuit layout. In this method, a plurality of design shapes are provided on different design layers over an active area within a graphical representation of the layout. A connection extends perpendicularly between a first design shape formed on a first design layer and a second design shape formed on the first design layer. First and second cut mask shapes on first and second cut mask design layers, respectively, are generated. The first cut shape removes portions of the first design layer and the second cut shape removes portions of the second design layer.