摘要:
A seat suspension is provided that has a damper unit which is connected between the seat and the chassis on which the seat is mounted. The damper can be switched between soft and hard settings. The damper switching is controlled based on the relative position of the seat and one of the relative or absolute velocity of the seat. When the seat and the chassis are moving in the same direction the damper is set to soft, (producing a low damping effect), while when the seat and chassis are moving in opposite directions the damper is switched to hard (producing a high damping effect).
摘要:
In order to ensure riding comfort and driving stability in an automotive suspension system, the nature of the effect of the damping force generated by the suspension system is observed. When the damping characteristics of the suspension system are too hard, resulting in amplification of vibrations in the suspension system, the damping characteristics are softened to ensure satisfactory riding comfort. Therefore, according to the present invention, an automotive suspension system has variable damping characteristics which depend on the nature of the damping force produced in response to bounding and/or rebounding motion of the vehicle so as to optimize damping characteristics to achieve both riding comfort and driving stability. In the preferred embodiment, a suspension control system uses the vibration frequency of a sprung mass and the relative speed between the sprung mass and an unsprung mass as control parameters representing the nature of damping force.
摘要:
In order to ensure riding comfort and driving stability in an automotive suspension system, the nature of the effect of the damping force generated by the suspension system is observed. When the damping characteristics of the suspension system are too hard, resulting in amplification of vibrations in the suspension system, the damping characteristics are softened to ensure satisfactory riding comfort. Therefore, according to the present invention, an automotive suspension system has variable damping characteristics which depend on the nature of the damping force produced in response to bounding and/or rebounding motion of the vehicle so as to optimize damping characteristics to achieve both riding comfort and driving stability. In the preferred embodiment, a suspension control system uses the vibration frequency of a sprung mass and the relative speed between the sprung mass and an unsprung mass as control parameters representing the nature of damping force.
摘要:
A suspension control system for an automotive vehicle automatically adjusts the damping strength of variable shock absorbers or other dampers in accordance with road surface conditions as recognized by frequency analysis of a vehicle height or vibration sensor signal. The sensor signal reflects vertical displacement of the vehicle body from the road surface and includes high-frequency components due solely to displacement of the wheels or unsprung mass relative to the road surface and low-frequency components due to displacement of the vehicle body or sprung mass. The sensor signal is filtered into these separate frequency bands and the amplitude of each is compared to a corresponding reference level to give an indication of the irregularities in the road surface. Specifically, a high-amplitude low-frequency component indicates large-scale bumps and dips capable of bouncing the vehicle whereas a strong high-frequency component reflects a rough-textured road surface, such as gravel. The comparison information is sent to a suspension system controller which causes actuation of the shock absorbers to a hard mode of operation when the low-frequency sensor signal components are relatively strong.
摘要:
A suspension control system for automotive vehicles automatically adjusts the damping strength of variable shock absorbers or other dampers in accordance with road surface conditions as recognized by frequency analysis of a vehicle height or vibration sensor signal. The sensor signal reflects vertical displacement of the vehicle body from the road surface and includes high-frequency components due solely to displacement of the wheels or unsprung mass relative to the road surface and low-frequency components due to displacement of the vehicle body or sprung mass. The sensor signal is filtered into these separate frequency bands, the amplitude of each of which is compared to a corresponding reference level. The results of comparison give an indication of the degree and scale of irregularities in the road surface; specifically, a high-amplitude low-frequency component indicates larger-scale bumps and dips capable of bouncing the vehicle whereas a strong high-frequency component reflects a rough-textured road surface, such as gravel. The comparison information is sent to a suspension system controller which causes actuation of the shock absorbers to a stiffer mode of operation when the low-frequency sensor signal components are relatively strong.
摘要:
A suspension control system for automotive vehicles automatically adjusts the damping strength of variable shock absorbers or other dampers in accordance with road surface conditions as recognized by frequency analysis of a vehicle height or vibration sensor signal. The sensor signal reflects vertical displacement of the vehicle body from the road surface and includes high-frequency components due solely to displacement of the wheels or unsprung mass relative to the road surface and low-frequency components due to displacement of the vehicle body or sprung mass. The sensor signal is filtered into these separate frequency bands, the amplitude of each of which is compared to a corresponding reference level. The results of comparison give an indication of the degree and scale of irregularities in the road surface; specifically, a high-amplitude low-frequency component indicates larger-scale bumps and dips capable of bouncing the vehicle whereas a strong high-frequency component reflects a rough-textured road surface, such as gravel. The comparison information is sent to a suspension system controller which causes actuation of the shock absorbers to a stiffer mode of operation when the low-frequency sensor signal components are relatively strong.
摘要:
A distance and a relative velocity between a vehicle and a vehicle in front are detected, and the minimum braking force required to avert a collision is calculated. A vehicle braking force based on the depression angle of the brake pedal and the minimum vehicle braking force are compared, and the larger of these two forces is applied for braking. Collision of the vehicles is thereby prevented. Preferably, the braking force is distributed to each of wheel brakes according to the dynamic loads acting on each wheel so that braking force is optimized and the wheels do not easily lock. More preferably, an alarm is issued when the vehicle braking force based on the brake pedal depression angle is less than the minimum vehicle braking force so that the driver is alerted to this fact.
摘要:
Two torque sensors (201, 202) are arranged for detecting the steering force which is added to the motor-driven power steering apparatus. One torque sensor is selected by the command signal from the micro computer (80), for controlling the auxiliary steering force from the motor-driven actuator (5) by the command signal from the micro computer (80).
摘要:
A drive torque of a vehicle drive wheel is controlled so that a slip ratio between the drive wheel and a road surface is equal to a target value. A determining function of which the sign varies when the slip ratio is equal to the target value, and a switching function comprising a time integral of the determining function, are set, and the drive torque target value is set such that it is directly proportional to the switching function. Alternatively, the drive torque target value is set based on the switching function which is set equal to the determining function and corrected based on an angular acceleration of the drive wheel.
摘要:
In an apparatus for controlling the braking force applied to the wheels of a vehicle, the braking force required for the vehicle is calculated according to a brake pedal depression amount and the weight of the vehicle. This braking force is allocated to the wheels, according to static loads acting on the wheels which vary according to the vehicle loading conditions. Alternatively, the forward/backward acceleration of the vehicle and sideway acceleration of the front and rear axles are detected, dynamic loads acting on the wheels are calculated from the static loads and these accelerations, and the braking force is allocated according to these dynamic loads. Preferably, the roll angles of the front and rear axles are respectively detected, and the detected sideways accelerations are corrected based on these angles. By way this braking force control, braking force can be optimized according to the loading conditions in commercial vehicles, such as trucks, where wheel load conditions largely vary.