摘要:
The present invention is to fabricate a quantum dot functional structure having ultra-fine particles homogeneously distributed in a transparent medium by efficiently fabricating high-purity ultra-fine particles having a single particle diameter and uniform structure and depositing the ultra-fine particles onto a substrate in conjunction with the transparent medium. For these purposes, an apparatus for fabricating a quantum dot functional structure is provided. The apparatus comprises: an ultra-fine particle generating chamber for generating high-purity ultra-fine particles by exciting a semiconductor target with pulsed laser light in a low-pressure rare gas atmosphere, and then by allowing the semiconductor target to be detached or ejected by ablation reaction and condensed and grown in the gas; an ultra-fine particle classifying chamber for classifying the ultra-file particles; a depositing chamber for depositing the high-purity semiconductor ultra-fine particles and the transparent medium by exciting a transparent medium target with excimer laser light at the same time or alternately when the high-purity semiconductor ultra-fine particles are collected onto the substrate, and by collecting the substance generated through ablation reaction onto the substrate; and a carrier gas exhaust system.
摘要:
Fabrication of a quantum dot functional structure having ultra-fine particles homogeneously distributed in a transparent medium includes depositing such particles having a single particle diameter and uniform structure onto a substrate with the transparent medium. An apparatus for fabricating a quantum dot functional structure comprises: a generating chamber for generating high-purity ultra-fine particles by exciting a semiconductor target with pulsed laser light in low-pressure rare gas, and then allowing the semiconductor target to be detached or ejected by ablation and condensed and grown in the gas; a particle classifying chamber for classifying the ultra-fine particles; a depositing chamber for depositing the high-purity semiconductor ultra-fine particles and the transparent medium by exciting a transparent medium target with excimer laser light simultaneously or alternately when the particles are collected onto the substrate, and by collecting the substance generated through ablation onto the substrate; and a carrier gas exhaust system.
摘要:
In fabricating a monochromic and highly coherent light source, no single crystalline bulk semiconductor is used, but two different kinds of transparent substances are alternately stacked over each other to constitute a periodic structure in ½ of the intended wavelength. At least one of the two kinds of transparent substances is controllable in electric conductivity, and the structure is such that inside a medium consisting of this kind of transparent substance light-emitting semiconductor particulates are embedded. Accordingly, a light-emitting device has this structure, which makes possible control of the center wavelength of light emission, the width of wavelength distribution and coherence by adjusting the geometrical parameters of the device without having to alter the kind of material use.
摘要:
In fabricating a monochromic and highly coherent light source, no single crystalline bulk semiconductor is used, but two different kinds of transparent substances are alternately stacked over each other to constitute a periodic structure in ½ of the intended wavelength. At least one of the two kinds of transparent substances is controllable in electric conductivity, and the structure is such that inside a medium consisting of this kind of transparent substance light-emitting semiconductor particulates are embedded. Accordingly, a light-emitting device has this structure, which makes possible control of the center wavelength of light emission, the width of wavelength distribution and coherence by adjusting the geometrical parameters of the device without having to alter the kind of material use.
摘要:
A fine-particle classification apparatus includes an aerosol generation section which generates an aerosol containing fine particles in a medium background gas, a fine-particle classification section which classifies the fine particles contained in the aerosol in a sheath gas, and an introduction section, between the aerosol generation section and the fine-particle classification section, which introduces the aerosol generated in the aerosol generation section into the fine-particle classification section. The introduction section uses a carrier gas with an adequately high velocity to introduce the aerosol generated in the aerosol generation section to the classification section using a pressure difference.
摘要:
In fabricating a monochromic and highly coherent light source, no single crystalline bulk semiconductor is used, but two different kinds of transparent substances are alternately stacked over each other to constitute a periodic structure in ½ of the intended wavelength. At least one of the two kinds of transparent substances is controllable in electric conductivity, and the structure is such that inside a medium consisting of this kind of transparent substance light-emitting semiconductor particulates are embedded. Accordingly, a light-emitting device has this structure, which makes possible control of the center wavelength of light emission, the width of wavelength distribution and coherence by adjusting the geometrical parameters of the device without having to alter the kind of material use.
摘要:
An optoelectronic material, device applications, and methods for manufacturing the optoelectronic material are provided to make it possible to obtain stable characteristics without deterioration of luminescence over time in the atmosphere. The optoelectronic material is composed of a porous silicon the surface of which is nitrided to form a silicon nitride layer thereon. This allows a stable electroluminescence to be obtained, without oxidation of the surface of the porous silicon.
摘要:
The object of the present invention is to form the fine structure on a cathode surface homogeneously and reproducibly to realize the increased emission current value and stability with a simple process in the electron emission element forming process. An electron emission part of an electron emission element that is a crystalline thin film of electron emissive material formed in self-aligning fashion by means of a laser ablation process, in which a laser beam is irradiated onto a target material and the material ejected and emitted from the target material is deposited to form a thin film on a substrate facing to the target, is used as the thin film electron source. The above-mentioned structure is effective to realize the low electron emission threshold value and the increased emission current value and stability, and realize the reduced cost with the structure that is simpler than the conventional structure.
摘要:
In the fine-particle classification apparatus of the present invention, a carrier gas velocity in a take-in section to introduce the aerosol to the fine-particle classification apparatus from the aerosol generation apparatus is increased so as to decrease the static pressure in the take-in section. It is thereby possible to decrease the static pressure in the take-in section than the total pressure in the aerosol generation apparatus. As a result, it is possible to introduce the aerosol inside the fine-particle classification apparatus with a total pressure equal to or higher than that in the aerosol generation apparatus from a fine particle generating area, i.e. aerosol generation apparatus with a pressure equal to or lower than that in the fine-particle classification apparatus.
摘要:
In a laser ablation method comprising the steps of irradiating a laser beam to target material 107, and depositing ejected species from the target material on a faced substrate 109 to form a thin film, an ambient gas is introduced into reaction chamber 101 under a constant certain pressure when the laser ablation is performed, using a target material with almost or the same composition as that of a thin film to be obtained. It is thereby possible to obtain a thin film with the same composition as that of the target material readily, without requiring an introduction of O2 gas and a substrate heating. As a result, it is not necessary to limit materials for a substrate, and it is possible to adjust the adaptability of an anaerobic process.