摘要:
An internal power supply potential generating circuit includes: a control potential generating circuit having four MOS transistors connected in series between a node and a ground potential line, and controlling a pull-up transistor and a pull-down transistor in order that a potential at an output node coincides with a control potential; a monitor potential generating circuit having four MOS transistors connected in series between a prescribed node and a ground potential line, and generating a monitor potential; a potential dividing circuit generating a potential ½ times a reference potential; and a VCC1 generating circuit controlling a potential at the prescribed potential in order that the monitor potential becomes the reference potential. Therefore, an output potential can be controlled with correctness.
摘要:
An internal power supply potential generating circuit includes: a control potential generating circuit having four MOS transistors connected in series between a node and a ground potential line, and controlling a pull-up transistor and a pull-down transistor in order that a potential at an output node coincides with a control potential; a monitor potential generating circuit having four MOS transistors connected in series between a prescribed node and a ground potential line, and generating a monitor potential; a potential dividing circuit generating a potential 1/2 times a reference potential; and a VCC1 generating circuit controlling a potential at the prescribed potential in order that the monitor potential becomes the reference potential. Therefore, an output potential can be controlled with correctness.
摘要:
A control circuit & mode register outputs a signal responsive to each command to a VDC control circuit. The VDC control circuit outputs a signal PWRUP changing the quantity of a through current Ic of a comparator stored in a VDC in response to the command. The VDC control circuit internally generates a signal of which pulse width corresponds to a prescribed delay time, in response to input of the command. Therefore, activation of each bank may not be monitored but current consumption can be reduced by preferably controlling a power supply current while minimizing the number of delay circuits and wires.
摘要:
An internal power supply potential generating circuit includes: a control potential generating circuit having four MOS transistors connected in series between a node and a ground potential line, and controlling a pull-up transistor and a pull-down transistor in order that a potential at an output node coincides with a control potential; a monitor potential generating circuit having four MOS transistors connected in series between a prescribed node and a ground potential line, and generating a monitor potential; a potential dividing circuit generating a potential 1/2 times a reference potential; and a VCC1 generating circuit controlling a potential at the prescribed potential in order that the monitor potential becomes the reference potential. Therefore, an output potential can be controlled with correctness.
摘要:
This invention provides a semiconductor device contrived to prevent a reference voltage and a reference current which are supplied to a high speed OCO from varying with a change in ambient temperature and/or a change in an external power supply voltage and to reduce the circuit area of a power supply module. The high speed OCO outputs a high speed clock whose magnitude is determined by the reference current and the reference voltage. A temperature sensor detects the ambient temperature of the high speed OCO and a voltage sensor detects the operating voltage of the high speed OCO. The power supply module includes a BGR and generates the reference voltage, reference current, and operating voltage of the high speed OCO, based on a primary reference voltage which is output by the BGR. A flash memory stores a table specifying trimming codes for the reference voltage and reference current, related to an ambient temperature and an operating voltage of the high speed OCO. A logic unit adjusts the values of the reference current and reference voltage, according to the reference voltage and reference current trimming codes related to the detected ambient temperature and operating voltage.
摘要:
A semiconductor device includes a voltage control and oscillation circuit oscillating at a frequency according to a first control voltage to output an oscillation signal, a frequency/voltage conversion circuit receiving the oscillation signal from the voltage control and oscillation circuit and converting a frequency of the oscillation signal into a voltage, a control voltage generation circuit generating a new second control voltage having a level between that of the voltage converted by the frequency/voltage conversion circuit and that of a second control voltage generated previously, and an analog integration circuit integrating the second control voltage to generate the first control voltage and outputting the first control voltage to the voltage control and oscillation circuit.
摘要:
A method of and an apparatus for removing a naturally grown oxide film and contaminants on the surface of a semiconductor substrate and then forming a thin film on the cleaned surface. The semiconductor substrate is placed in a pretreatment chamber and then hydrogen chloride gas is introduced into the chamber. Then, the semiconductor substrate is heated at a temperature between 200.degree..about.700.degree. C. and the surface of the semiconductor substrate is irradiated with ultraviolet rays, whereby the naturally grown oxide film and other contaminants on the semiconductor substrate can be removed. Then, a thin film is formed on the cleaned surface of the semiconductor substrate by a CVD method or a sputter method. According to this method, the naturally oxide film and other contaminants can be removed from the surface of the semiconductor substrate at a low temperature and the thin film can be formed on the cleaned surface. As a result, an interface structure between the semiconductor substrate and the thin film can be controlled to be in a preferable state.
摘要:
Holes generated by impact ionization in a SOI-MOS transistor is removed from the channel region to improve the breakdown voltage between the source and drain. A channel region of the SOI-MOS transistor is formed of a p type silicon layer. A drain region is formed of an n type silicon layer. A source region adjacent to the channel region includes an n type germanium layer. The forbidden energy band gap width of the germanium is smaller than that of the silicon. The n type germanium layer is formed in at least a portion of the source region. This layer is formed by ion-implanting germanium into a portion of the silicon layer, or removing a portion of the silicon layer, followed by growing a germanium layer in an epitaxial manner thereabove.
摘要:
In a CMOS semiconductor device, a pMOS transistor and an nMOS transistor are formed on a single substrate. Each of the source/drain regions of the nMOS transistor and the pMOS transistor has LDD structure composed of a combination of a low concentration impurity region and a high concentration impurity region. The low concentration impurity region of the LDD structure of the pMOS transistor is formed in a self-align manner by ion implantation using a sidewall spacer with relatively thick film thickness. The low concentration impurity region of the LDD structure of the nMOS transistor is formed in a self-align manner by ion implantation using a relatively thin sidewall spacer as a mask. The sidewall spacer with thick film thickness of the pMOS transistor restrains that the channel between the source/drain regions is shortened due to thermal diffusion to cause punch through. As for the sidewall spacer of the nMOS transistor, its film thickness is selected to effectively restrain hot carrier effect in the vicinity of the drain and restrain degradation of current handling capability due to parasitic resistance to the minimum.
摘要:
In an MIS transistor of a type having LDD and salicide structures, the location of the boundary between the high and low impurity density source/drain regions and the positions of the salicide layers on the source/drain regions are independently controlled during fabrication using a double gate sidewall structure. An MIS transistor improved thereby has its boundary between the high and low impurity density source/drain regions at or displaced toward the control gate electrode with respect to the interface of the double gate sidewall structure.