摘要:
A multi-layer wiring substrate includes an aluminum nitride ceramic substrate, a multi-layer wiring part having an electric insulating layer of an organic polymer, a die pad for mounting thereon an electronic part, and a thermal via of a column shape for effectively dissipating heat generated in the mounted electric part. The multi-layer wiring part is integrally formed on the ceramic substrate. The die pad is provided on a surface of the multi-layer wiring part. One end of the thermal via connects to the die pad, while the other end of the thermal via passes through the multi-layer wiring part and extends at least to the ceramic substrate. The thermal via is electrically insulated from the multi-layer wiring part. In the second multi-layer wiring substrate, at least one of end portions of the above thermal via is wider than a section of the other portion of the thermal via, resulting in further improvement of the heat dissipating property.
摘要:
A thermal conductivity sheet is provided which is superior all in heat radiating characteristics (thermal conductivity) in the direction of sheet thickness, close-contact with respect to parts to be cooled, and electrical insulation. In a thermal conductivity sheet 1 in which a plurality of highly thermally conductive insulators 3 are dispersed in a matrix insulator 2, the highly thermally conductive insulators 3 are oriented obliquely or erectly in the direction of thickness of the thermal conductivity sheet 1 such that at least one end faces of the highly thermally conductive insulators 3 are exposed to a surface of the matrix insulator 2. Preferably, a ratio of the total sectional area of the highly thermally conductive insulators 3 to the total surface area of the thermal conductivity sheet 1 is set to be equal to or larger than 1%.
摘要:
A heat sink according to the invention comprises a multilayered body prepared by laying one upon the other a plurality of heat sink fin elements having pin-fin sections formed by cutting a number of slits through thin plates of a thermally conductive material with spacers, each being inserted between two adjacent heat sink fin elements to separate them by a given distance. The method of preparing a heat sink comprises steps of preparing heat sink fin elements by forming a number of slits and a surrounding marginal frame area in each of a first set of thermally conductive thin plates, preparing spacers by cutting out a central area of and forming a surrounding marginal frame area in each of a second set of thermally conductive thin plates having a shape same as that of the first set of thin plates, laying said heat sink fin elements and said spacers alternately one upon the other and bonding said assembled heat sink fin elements and spacers together at the outer surface or contacted areas to form a multilayered body.
摘要:
A magnetic refrigerating device includes: a magnetic refrigerating unit including a magnetic material “A” exhibiting a magneto-caloric effect that the temperature of the material “A” is increased by the application of a magnetic field and the temperature of the material “A” is decreased by the removal of a magnetic field, a magnetic material “B” exhibiting a magneto-caloric effect that the temperature of the material “B” is decreased by the application of a magnetic field and the temperature of the material “B” is increased by the removal of a magnetic field, a heat conductive material “a” exhibiting higher heat conductivity under the application of a magnetic field and lower heat conductivity under the removal of a magnetic field, and a heat conductive material “b” exhibiting lower heat conductivity under the application of a magnetic field and higher heat conductivity under the removal of a magnetic field, wherein the magnetic refrigerating unit is configured so as to include at least one layered structure denoted by “AaBb” or “AbBa”; and a magnetic field-applying means to apply a magnetic field to the magnetic refrigerating unit.
摘要:
A magnetic refrigerating device includes: at least one set of double-structured Halbach type magnet including a ring-shaped inner Halbach type magnet and a ring-shaped outer Halbach type magnet which are coaxially arranged one another so that a magnetic field generated by the inner Halbach type magnet is superimposed with a magnetic field generated by the outer Halbach type magnet; a magnetic refrigerant or a magnetic refrigeration working chamber including the magnetic refrigerant therein disposed in a bore space of the inner Halbach type magnet; and a rotating mechanism to rotate the outer Halbach type magnet while the inner Halbach type magnet is stationed.
摘要:
A carriage arm has a movement locus and supports a head that performs either one of recording information to a disk and reproducing information recorded on the disk. A carriage driving mechanism moves the carriage arm in a radial direction of the disk to perform a positioning of the carriage arm. A guide member changes a direction of air flowing on at least one of a peripheral portion of the disk and a neighboring portion of the peripheral portion toward a center portion of the disk. The guide member is provided in a position where the movement locus of the carriage arm is not blocked in an area of either one of the peripheral portion and the neighboring portion.
摘要:
An evaporator includes a hermetically sealed vessel 1A having an inlet 17 and an outlet 16, a refrigerant supply portion 14, in which liquid refrigerant is stored, a heat transfer portion 12, to which the liquid refrigerant stored in the refrigerant supply portion 14 is supplied, heat transfer fins 12A having a heat transfer surface provided in the heat transfer portion 12, a wick 13A provided on the heat transfer surface of the heat transfer fins 12A to transfer the liquid refrigerant supplied to the heat transfer portion 12 towards the outlet 16 by means of capillarity, and a heat radiation fins 15, which is provided on the outer surface of the refrigerant supply portion 14 to prevent the temperature of the refrigerant introduced into the refrigerant supply portion from rising.
摘要:
A battery-powered vacuum cleaner is provided with a battery pack that generates heat and is capable of efficiently cooling the battery pack. The battery pack of the battery-powered vacuum cleaner is cooled by a vacuum cleaner cooling method. The battery-powered vacuum cleaner comprises a battery pack (3) including a plurality of secondary batteries, a battery pack container (2) containing the battery pack, a motor (7) driven for operation by power supplied by the battery pack, a fan (5) driven by the motor to suck air, a dust cup (9) for separating dust from air sucked therein by the fan and storing the dust separated from the sucked air, a housing (1) containing the battery pack container, the motor, the fan and the dust cup, and provided with a first suction opening (30) through which external air is sucked, a first airflow duct (32) for guiding the air sucked in by the fun through the dust cup to the motor, and a second airflow duct (36), for guiding air for cooling the battery pack through the battery pack, joined to the first airflow duct at a junction (34) on the upstream side of the fan.
摘要:
One surface of a base section having an open portion forming an inlet port of a fluid is thermally connected to a target module to be cooled. Pluralities of fins arranged in parallel are mounted on the other surface of a base section in a direction substantially perpendicular to the base section. A fan is arranged to permit the fluid to flow through the clearance between the adjacent fins. A wall section open to the inlet port of the fluid is mounted on the base section. A part of the wall section constitutes a detachable lid section. A partition plate having through-holes formed therein is arranged between the base section and the lid section so as to divide the space between the base section and the lid section into two fluid flowing channels consisting of a main flowing channel and an auxiliary flowing channel.
摘要:
A battery device designed so that a plurality of battery modules (1) are arranged in rows at given spaces in a enclosure (2). Turbulence accelerators (5), such as dummy battery units or the like, are provided in a position on the uppermost-stream side of the enclosure in which air flows in the direction of arrangement of the battery modules. The heat transfer ability for the battery modules in the upper-stream position is enhanced by the turbulence accelerators which disorders the airflow introduced into the enclosure. Auxiliary coolant intake ports (7) for the introduction of a coolant are provided in the middle of an airflow path, whereby the heat transfer ability on the lower-stream side is enhanced, so that battery temperature differences between the battery units arranged in the enclosure can be restrained. Thus, a simple-construction battery device is realized enjoying improved quality and operation stability.