摘要:
The objective of the present invention is to provide a semiconductor device of a hetero-junction field effect transistor that is capable of obtaining a high output and a high breakdown voltage and a manufacturing method of the same.The present invention is a semiconductor device of a hetero-junction field effect transistor provided with an AlxGa1-xN channel layer with a composition ratio of Al being x (0
摘要翻译:本发明的目的是提供能够获得高输出和高击穿电压的异质结场效应晶体管的半导体器件及其制造方法。 本发明是一种异质结场效应晶体管的半导体器件,其具有Al组成比为Al的Al x Ga 1-x N沟道层, 0
摘要:
The objective of the present invention is to provide a semiconductor device of a hetero-junction field effect transistor that is capable of obtaining a high output and a high breakdown voltage and a manufacturing method of the same. The present invention is a semiconductor device of a hetero junction field effect transistor provided with an AlxGa1-xN channel layer with a composition ratio of Al being x (0
摘要翻译:本发明的目的是提供能够获得高输出和高击穿电压的异质结场效应晶体管的半导体器件及其制造方法。 本发明是一种异质结场效应晶体管的半导体器件,其具有Al x Ga 1-x N沟道层,Al x Ga 1-x N沟道层的组成比为Al(x(0
摘要:
The objective of the present invention is to provide a semiconductor device of a hetero-junction field effect transistor that is capable of obtaining a high output and a high breakdown voltage and a manufacturing method of the same. The present invention is a semiconductor device of a hetero-junction field effect transistor provided with an AlxGa1-xN channel layer with a composition ratio of Al being x (0
摘要翻译:本发明的目的是提供能够获得高输出和高击穿电压的异质结场效应晶体管的半导体器件及其制造方法。 本发明是一种异质结场效应晶体管的半导体器件,其具有Al x Ga 1-x N沟道层,Al x Ga 1-x N沟道层的组成比为Al(x(0
摘要:
A major object of the present invention is to provide an improved semiconductor device so as to be able to reduce gate electric field concentration at a channel edge, suppress decrease in the threshold during MOSFET operation and reduce the leakage current. A gate insulation film is formed on a semiconductor substrate. A gate electrode is formed on the semiconductor substrate with the gate insulation film therebetween. The dielectric constant of the gate insulation film is not uniform in the surface.
摘要:
In making a field effect transistor, a dummy gate electrode is formed before a gate electrode is formed. Extension regions, a side wall silicon nitride film, source/drain regions, a silicon oxide film, and other elements are formed with respect to the dummy gate electrode. The dummy gate electrode is removed, and a part of the extension regions diffused into a region immediately under the dummy gate electrode is removed. The removed part is filled with silicon selection epitaxial film. Thereafter, the intended gate electrode is formed. This production method produces a field effect transistor that prevents deterioration of electrical characteristics caused by the short channel effect and parasitic resistance.
摘要:
Source and drain regions include regions of an epitaxial silicon film on the surface of the substrate and regions in the substrate. The depth of junctions of the source and drain regions is identical to or shallower than the depth of junctions of extension regions. As a result, even if the thickness of the side wall layer is reduced, since the depletion layer of the extension regions with lower impurity concentration compared with the source and drain regions is predominant, the short channel effect has a smaller effect.
摘要:
A method of producing a semiconductor device includes forming a gate electrode on a channel region on a surface of a semiconductor region of a semiconductor substrate, the channel region having a depth in the semiconductor substrate; forming a first pair of side wall spacers on opposite sides of the gate electrode; forming elevated semiconductor layers, each elevated semiconductor layer being elevated relative to the channel region, on regions outside of the pair of side wall spacers and in which source and drain regions of a first conductivity type are to be formed; removing the pair of first side wall spacers; and forming a pair of pocket injection regions of a second conductivity type by introducing, after the side wall spacers are removed, a dopant impurity producing the second conductivity type deeper in the semiconductor substrate than a region where the side wall spacers were formed, the pair of pocket injection regions respectively covering only a neighborhood of respective side surface parts of the channel region, where the source and drain regions are to be formed, forming respective pn junctions only between the neighborhood of the side surface parts and the pocket injection regions.
摘要:
A nitride semiconductor device with a p electrode having no resistance between itself and other electrodes, and a method of manufacturing the same are provided. A p electrode is formed of a first Pd film, a Ta film, and a second Pd film, which is an antioxidant film for preventing oxidation of the Ta film, and on a p-type contact layer of a nitride semiconductor. On the second Pd film, a pad electrode is formed. The second Pd film as an antioxidant film is formed on the entire upper surface of the Ta film which forms the p electrode, to prevent oxidation of the Ta film. This inhibits the resistance between the p electrode and the pad electrode, thereby preventing a failure in contact between the p electrode and the pad electrode and providing the low-resistance p electrode.
摘要:
A method of manufacturing a semiconductor device provides a semiconductor device with a gallium-nitride-based semiconductor structure that allows long-term stable operation without degradation in device performance. After formation of an insulation film on a surface other than on a ridge surface, an oxygen-containing gas such as O2, O3, NO, N2O, or NO2 is supplied to oxidize a p-type GaN contact layer from the surface and to thereby form an oxide film on the surface of the p-type GaN contact layer. Then, a p-type electrode that establishes contact with the p-type GaN contact layer is formed by evaporation or sputtering on the oxide film and on the insulation film. Heat treatment is subsequently performed at temperatures between 400 and 700° C. in an atmosphere containing a nitrogen-containing gas such as N2 or NH3 or an inert gas such as Ar or He.
摘要:
A polysilicon nitride film is formed to cover a polysilicon gate. By heat treatment of the silicon nitride film in an oxygen atmosphere, a silicon oxinitride film is formed. By anisotropically etching the silicon oxinitride film and the silicon nitride film, a sidewall insulating film is formed. By epitaxial growth, selective silicon films of a prescribed film thickness are formed on source and drain regions. During this period, silicon islands are not deposited on the surface of sidewall insulating film. Consequently, a semiconductor device including a transistor of a superior electrical insulation can be obtained.