METHOD AND APPARATUS FOR REDUCING PIN COUNT FOR CONNECTION OF A MINIATURIZED FORM FACTOR CARD IN A MOBILE INFORMATION DEVICE
    1.
    发明申请
    METHOD AND APPARATUS FOR REDUCING PIN COUNT FOR CONNECTION OF A MINIATURIZED FORM FACTOR CARD IN A MOBILE INFORMATION DEVICE 失效
    用于减少移动信息设备中的微型形式因子卡连接PIN码的方法和装置

    公开(公告)号:US20080121685A1

    公开(公告)日:2008-05-29

    申请号:US11530766

    申请日:2006-09-11

    IPC分类号: G06F17/00

    CPC分类号: G06F1/22 G06F13/4291

    摘要: A reduced pin count connection system for an insertable operational systems card having a plurality of input and output signals to a host device having operational circuits responsive to the input and output signals of the card includes a master serial data link in the card for communicating at least a portion of the plurality of input and output signals of the card. A slave serial data link is operably interconnected to the master serial data link through a connector having a second plurality contacts less than the plurality of input and output signals and communicates the input and output signals to the operational circuits in the host device.

    摘要翻译: 一种用于可插入操作系统卡的减少的针数连接系统,其具有多个输入和输出信号到具有响应于卡的输入和输出信号的操作电路的主机设备,包括用于至少通信的卡中的主串行数据链路 卡的多个输入和输出信号的一部分。 从串行数据链路通过具有小于多个输入和输出信号的第二多个触点的连接器可操作地连接到主串行数据链路,并将输入和输出信号传送到主机设备中的操作电路。

    Method and apparatus for reducing pin count for connection of a miniaturized form factor card in a mobile information device
    2.
    发明授权
    Method and apparatus for reducing pin count for connection of a miniaturized form factor card in a mobile information device 失效
    一种用于在移动信息设备中连接小型化形状卡的引脚数量减少的方法和装置

    公开(公告)号:US07392954B2

    公开(公告)日:2008-07-01

    申请号:US11530766

    申请日:2006-09-11

    IPC分类号: G06K19/06

    CPC分类号: G06F1/22 G06F13/4291

    摘要: A reduced pin count connection system for an insertable operational systems card having a plurality of input and output signals to a host device having operational circuits responsive to the input and output signals of the card includes a master serial data link in the card for communicating at least a portion of the plurality of input and output signals of the card. A slave serial data link is operably interconnected to the master serial data link through a connector having a second plurality contacts less than the plurality of input and output signals and communicates the input and output signals to the operational circuits in the host device.

    摘要翻译: 一种用于可插入操作系统卡的减少的针数连接系统,其具有多个输入和输出信号到具有响应于卡的输入和输出信号的操作电路的主机设备,包括用于至少通信的卡中的主串行数据链路 卡的多个输入和输出信号的一部分。 从串行数据链路通过具有小于多个输入和输出信号的第二多个触点的连接器可操作地连接到主串行数据链路,并将输入和输出信号传送到主机设备中的操作电路。

    Determining Localization from Ordinal Comparison Data

    公开(公告)号:US20200228926A1

    公开(公告)日:2020-07-16

    申请号:US16559218

    申请日:2019-09-03

    IPC分类号: H04W4/029 H04W4/33

    摘要: A method for determining location of a target within an indoor environment, including the steps of: classifying a set of anchors having known locations within the indoor environment and a set of targets having unknown locations within the indoor environment, wherein each of the anchors and targets comprise hardware having sensors and wireless communication capabilities; creating a set of ordinal pair data sets comprising relative distances between each target and all anchors; ranking and aggregating the ordinal pair data sets to produce a set of dissimilarities that approximate distances; transforming the dissimilarities into estimated distances between each anchor and target using the known distances between the anchors as calibration; and inferring location of targets by formulating and solving a multidimensional unfolding optimization.

    Carbon nanoring and method for preparing the same
    6.
    发明授权
    Carbon nanoring and method for preparing the same 有权
    碳纳米及其制备方法

    公开(公告)号:US08834982B2

    公开(公告)日:2014-09-16

    申请号:US13994487

    申请日:2011-12-07

    IPC分类号: B32B3/02 C01B31/02 B82Y40/00

    摘要: The invention relates to a carbon nanoring and a method for preparing the same. The carbon nanoring according to the present invention is composed of monolayered or multilayered coaxial carbon rings, wherein the carbon ring has a structure similar to that of a closed ring system formed by graphite sheet being rolled, and each of an axial dimension and a radial dimension of the carbon nanoring is nanoscale with the axial dimension being smaller than the radial dimension. The invention further provides a method for preparing the above carbon nanoring including calcinating in an inert atmosphere or a reducing atmosphere a layered double hydroxides obtained by intercalating a long-chain alkyl anion and a carbon source molecule, growing a carbon nanoring within a confined region between layers under the catalysis of the metal element in layers, and removing the metal and the metal oxide by dissolving in an acid to obtain the carbon nanoring. By using this method, the carbon nanoring can be effectively controlled in terms of the axial dimension, the radial dimension, and the number of layers of the carbon ring thereof. The carbon nanoring provided by the present invention has the nano-ring shaped structure and the excellent properties of carbon materials, as well as more edge carbons and dangling bonds, and thus it has broad application prospects in such field as nanodevices, energy storage and sensing.

    摘要翻译: 本发明涉及一种碳纳米管及其制备方法。 根据本发明的碳纳米管由单层或多层同轴碳环组成,其中碳环的结构类似于由滚动的石墨片形成的闭环系统,其轴向尺寸和径向尺寸 的碳纳米尺寸是纳米级的,其轴向尺寸小于径向尺寸。 本发明还提供了一种制备上述碳纳米管的方法,包括在惰性气氛或还原气氛中煅烧通过插入长链烷基阴离子和碳源分子获得的层状双氢氧化物,在碳纳米管之间的限制区内生长碳纳米 在层内催化金属元素层,并通过溶解在酸中去除金属和金属氧化物以获得碳纳米。 通过使用该方法,可以根据其碳环的轴向尺寸,径向尺寸和层数有效地控制碳纳米化。 本发明提供的碳纳米管具有纳米环形结构和碳材料的优异性能,以及更多的边缘碳和悬挂键,因此在纳米器件,能量存储和感测领域具有广泛的应用前景 。

    CARBON NANORING AND METHOD FOR PREPARING THE SAME
    7.
    发明申请
    CARBON NANORING AND METHOD FOR PREPARING THE SAME 有权
    碳纳米管及其制备方法

    公开(公告)号:US20130273294A1

    公开(公告)日:2013-10-17

    申请号:US13994487

    申请日:2011-12-07

    IPC分类号: C01B31/02

    摘要: The invention relates to a carbon nanoring and a method for preparing the same. The carbon nanoring according to the present invention is composed of monolayered or multilayered coaxial carbon rings, wherein the carbon ring has a structure similar to that of a closed ring system formed by graphite sheet being rolled, and each of an axial dimension and a radial dimension of the carbon nanoring is nanoscale with the axial dimension being smaller than the radial dimension. The invention further provides a method for preparing the above carbon nanoring including calcinating in an inert atmosphere or a reducing atmosphere a layered double hydroxides obtained by intercalating a long-chain alkyl anion and a carbon source molecule, growing a carbon nanoring within a confined region between layers under the catalysis of the metal element in layers, and removing the metal and the metal oxide by dissolving in an acid to obtain the carbon nanoring. By using this method, the carbon nanoring can be effectively controlled in terms of the axial dimension, the radial dimension, and the number of layers of the carbon ring thereof. The carbon nanoring provided by the present invention has the nano-ring shaped structure and the excellent properties of carbon materials, as well as more edge carbons and dangling bonds, and thus it has broad application prospects in such field as nanodevices, energy storage and sensing.

    摘要翻译: 本发明涉及一种碳纳米管及其制备方法。 根据本发明的碳纳米管由单层或多层同轴碳环组成,其中碳环的结构类似于由滚动的石墨片形成的闭环系统,其轴向尺寸和径向尺寸 的碳纳米尺寸是纳米级的,其轴向尺寸小于径向尺寸。 本发明还提供了一种制备上述碳纳米管的方法,包括在惰性气氛或还原气氛中煅烧通过嵌入长链烷基阴离子和碳源分子获得的层状双氢氧化物,在碳纳米管之间的限制区内生长碳纳米 在层内催化金属元素层,并通过溶解在酸中去除金属和金属氧化物以获得碳纳米。 通过使用该方法,可以根据其碳环的轴向尺寸,径向尺寸和层数有效地控制碳纳米化。 本发明提供的碳纳米管具有纳米环形结构和碳材料的优异性能,以及更多的边缘碳和悬挂键,因此在纳米器件,能量存储和感测领域具有广泛的应用前景 。

    Method for depositing zinc oxide at low temperatures and products formed thereby
    8.
    发明授权
    Method for depositing zinc oxide at low temperatures and products formed thereby 有权
    低温沉积氧化锌的方法及由此形成的产品

    公开(公告)号:US08197914B2

    公开(公告)日:2012-06-12

    申请号:US11284193

    申请日:2005-11-21

    IPC分类号: H05H1/24

    摘要: The present invention discloses plasma enhanced chemical vapor deposition (PECVD) process for depositing n-type and p-type zinc oxide-based transparent conducting oxides (TCOs) at low temperatures with excellent optical and electrical properties on glass and temperature sensitive materials such as plastics and polymers. Specifically, it discloses PECVD process for depositing n-type ZnO by doping it with B or F and p-type ZnO by doping it with nitrogen excellent optical and electrical properties on glass and temperature sensitive materials such as plastics and polymers for TCO application. The process utilizes a mixture of volatile zinc compound, argon and/or helium as a diluent gas, carbon dioxide as an oxidant, and a dopant or reactant to deposit the desired ZnO-based TCOs.

    摘要翻译: 本发明公开了一种用于在低温下沉积n型和p型氧化锌基透明导电氧化物(TCO)的等离子体增强化学气相沉积(PECVD)工艺,在玻璃和温度敏感材料如塑料上具有优异的光学和电学性能 和聚合物。 具体地说,它公开了用于通过用B或F和p型ZnO掺杂以将氮掺杂在玻璃上的优异的光学和电学性质以及用于TCO应用的诸如塑料和聚合物的温度敏感材料来沉积n型ZnO的PECVD工艺。 该方法利用挥发性锌化合物,氩和/或氦气作为稀释气体,二氧化碳作为氧化剂和掺杂剂或反应物的混合物以沉积所需的ZnO基TCO。

    High sensitivity capacitive micromachined ultrasound transducer
    9.
    发明申请
    High sensitivity capacitive micromachined ultrasound transducer 审中-公开
    高灵敏度电容微机械超声换能器

    公开(公告)号:US20060004289A1

    公开(公告)日:2006-01-05

    申请号:US10881924

    申请日:2004-06-30

    IPC分类号: A61B8/14

    CPC分类号: B06B1/0292 B06B2201/76

    摘要: A capacitive micromachined ultrasound transducer (cMUT) comprises a lower electrode. Furthermore, the cMUT includes a diaphragm disposed adjacent to the lower electrode such that a gap having a first gap width is formed between the diaphragm and the lower electrode. Additionally, the cMUT includes at least one element formed in the gap, where the at least one element is arranged to provide a second gap width between the diaphragm and the lower electrode.

    摘要翻译: 电容微加工超声换能器(cMUT)包括下电极。 此外,cMUT包括邻近下电极设置的隔膜,使得在隔膜和下电极之间形成具有第一间隙宽度的间隙。 此外,cMUT包括形成在间隙中的至少一个元件,其中至少一个元件布置成在隔膜和下电极之间提供第二间隙宽度。

    Determining localization from ordinal comparison data

    公开(公告)号:US11356805B2

    公开(公告)日:2022-06-07

    申请号:US16559218

    申请日:2019-09-03

    IPC分类号: H04W24/00 H04W4/029 H04W4/33

    摘要: A method for determining location of a target within an indoor environment, including the steps of: classifying a set of anchors having known locations within the indoor environment and a set of targets having unknown locations within the indoor environment, wherein each of the anchors and targets comprise hardware having sensors and wireless communication capabilities; creating a set of ordinal pair data sets comprising relative distances between each target and all anchors; ranking and aggregating the ordinal pair data sets to produce a set of dissimilarities that approximate distances; transforming the dissimilarities into estimated distances between each anchor and target using the known distances between the anchors as calibration; and inferring location of targets by formulating and solving a multidimensional unfolding optimization.