摘要:
Some embodiments include a semiconductor device having a stack structure including a source comprising polysilicon, an etch stop of oxide on the source, a select gate source on the etch stop, a charge storage structure over the select gate source, and a select gate drain over the charge storage structure. The semiconductor device may further include an opening extending vertically into the stack structure to a level adjacent to the source. A channel comprising polysilicon may be formed on a side surface and a bottom surface of the opening. The channel may contact the source at a lower portion of the opening, and may be laterally separated from the charge storage structure by a tunnel oxide. A width of the channel adjacent to the select gate source is greater than a width of the channel adjacent to the select gate drain.
摘要:
Devices, memory arrays, and methods are disclosed. In an embodiment, one such device has a source/drain zone that has first and second active regions, and an isolation region and a dielectric plug between the first and second active regions. The dielectric plug may extend below upper surfaces of the first and second active regions and may be formed of a dielectric material having a lower removal rate than a dielectric material of the isolation region for a particular isotropic removal chemistry.
摘要:
Devices, memory arrays, and methods are disclosed. In an embodiment, one such device has a source/drain zone that has first and second active regions, and an isolation region and a dielectric plug between the first and second active regions. The dielectric plug may extend below upper surfaces of the first and second active regions and may be formed of a dielectric material having a lower removal rate than a dielectric material of the isolation region for a particular isotropic removal chemistry.
摘要:
3D NAND memory structures and related method are provided. In some embodiments such structures can include a control gate material and a floating gate material disposed between a first insulating layer and a second insulating layer, an interpoly dielectric (IPD) layer disposed between the floating gate material and control gate material such that the IPD layer electrically isolates the control gate material from the floating gate material, and a tunnel dielectric material deposited on the floating gate material opposite the control gate material.
摘要:
Methods of forming air gaps in memory arrays and memory arrays with air gaps thus formed are disclosed. One such method may include forming an isolation region, having a first dielectric, through a charge-storage structure that is over a semiconductor, the isolation region extending into the semiconductor; forming a second dielectric over the isolation region and charge-storage structure; and forming an air gap in the isolation region so that the air gap passes through the charge-storage structure and so that a thickness of the first dielectric is between the air gap and the second dielectric.
摘要:
3D NAND memory structures and related method are provided. In some embodiments such structures can include a control gate material and a floating gate material disposed between a first insulating layer and a second insulating layer, an interpoly dielectric (IPD) layer disposed between the floating gate material and control gate material such that the IPD layer electrically isolates the control gate material from the floating gate material, and a tunnel dielectric material deposited on the floating gate material opposite the control gate material.
摘要:
Methods of forming air gaps in memory arrays and memory arrays with air gaps thus formed are disclosed. One such method may include forming an isolation region, having a first dielectric, through a charge-storage structure that is over a semiconductor, the isolation region extending into the semiconductor; forming a second dielectric over the isolation region and charge-storage structure; and forming an air gap in the isolation region so that the air gap passes through the charge-storage structure and so that a thickness of the first dielectric is between the air gap and the second dielectric.
摘要:
A memory device comprising a vertical transistor includes a digit line that is directly coupled to the source regions of each memory cell. Because an electrical plug is not used to form a contact between the digit line and the source regions, a number of fabrication steps may be reduced and the possibility for manufacturing defects may also be reduced. In some embodiments, a memory device may include a vertical transistor having gate regions that are recessed from an upper portion of a silicon substrate. With the gate regions recessed from the silicon substrate, the gate regions are spaced further from the source/drain regions and, accordingly, cross capacitance between the gate regions and the source/drain regions may be reduced.
摘要:
There is provided fin structures and methods for fabricating fin structures. More specifically, fin structures are formed in a substrate. The fin structures may include two fins separated by a channel, wherein the fins may be employed as fins of a field effect transistor. The fin structures are formed below the upper surface of the substrate, and may be formed without utilizing a photolithographic mask to etch the fins.
摘要:
One-transistor (1T) capacitor-less DRAM cells each include a MOS transistor having a bias gate layer that separates a floating body region from a base substrate. The MOS transistor functions as a storage device, eliminating the need of the storage capacitor. Logic “1” is written to and stored in the storage device by causing majority carriers (holes in an NMOS transistor) to accumulate and be held in the floating body region next to the bias gate layer, and is erased by removing the majority carriers from where they are held.