Metasurface arrangement
    1.
    发明授权

    公开(公告)号:US11837784B2

    公开(公告)日:2023-12-05

    申请号:US17434671

    申请日:2019-03-01

    IPC分类号: H01Q15/00 H01Q15/04 H01P1/20

    摘要: The present disclosure relates to a metasurface arrangement including a first metasurface and a second metasurface which run mutually parallel and face each other. Each metasurface includes a corresponding periodic or quasi-periodic structure formed in a respective pattern. The first metasurface is formed in a dielectric material structure and the second metasurface is formed in either a dielectric material structure or in an electrically conducting structure. The periodic or quasi-periodic structure on the first metasurface is configured to yield a first response to an incident electromagnetic wave between the two metasurfaces, and the periodic or quasi-periodic structure on the second metasurface is configured to yield a second response to the incident electromagnetic wave between the two metasurfaces that is equivalent to the first response, thereby rendering the two metasurfaces mutually electromagnetically symmetric.

    Method and System for Mast Sway Compensation

    公开(公告)号:US20230075873A1

    公开(公告)日:2023-03-09

    申请号:US17795633

    申请日:2020-02-26

    摘要: A method for compensating a movement of an antenna structure having a directive antenna mounted thereto is disclosed. The method comprises obtaining sensor data from a motion sensor, where the sensor data is indicative of the movement of the antenna structure relative to a reference orientation. Moreover, the motion sensor is associated with a set of calibration parameters such that when applied to the obtained sensor data, calibrated sensor data is formed. Further, the method comprises generating a compensation signal at an output for controlling a beam direction of the directive antenna based on the formed calibrated sensor data such that the beam direction is an intended direction of the directive antenna and such that the (unwanted) movement of the antenna structure is compensated. The method further comprises re-calibrating the motion sensor in order to generate a set of calibration coefficients upon either one of an expiry of a predefined time period, a counter reaching a counter threshold, or upon a measured antenna parameter or signal parameter diverging from a parameter range. Once, one of these conditions are fulfilled, the re-calibration is performed by obtaining a received signal strength indication (RSSI) while the beam direction is controlled based on the generated compensation signal, generating the set of calibration coefficients based on the obtained RSSI, and updating the set of calibration parameters for the motion sensor with the determined set of calibration coefficients.